Effects of CCL2 chemokine missense mutations on CCR5 receptor affinity: a computational study in the context of HIV infection regulator discovery

Cover Page

Cite item

Full Text

Abstract

Introduction. HIV entry into host cells requires CD4 receptors and CCR5 co-receptors. Natural CCR5 ligands can inhibit HIV through steric blocking and receptor internalization. Although CCL2 is primarily a CCR2 ligand, emerging evidence suggests possible CCR5 interaction, challenging conventional views of chemokine specificity. Natural CCL2 missense mutations provide valuable insights into receptor interaction mechanisms and their potential role in HIV infection modulation, offering new perspectives on viral entry inhibition strategies. Materials and methods. The wild-type complex was modeled using AlphaFold Server with rigorous validation. From UniProt database, we selected 41 CCL2 mutations within predicted CCR5 binding sites based on structural analysis. For each variant, we generated mutant protein structures and complex models using FoldX algorithm in YASARA environment. We calculated binding energies, complex stability, and interaction energy parameters, while conducting detailed analysis of atomic contacts and hydrogen bonding patterns. Functional impact of mutations was assessed using PolyPhen-2 algorithm. Results. Molecular modeling identified 35 CCL2 residues forming the comprehensive CCR5 interface. Five specific mutations (P78H, S57C, I28V, N29A, K79A) significantly enhanced CCR5 binding affinity, reducing interaction energy compared to wild type. P78H and S57C variants showed the strongest effects and were consistently predicted as “probably damaging”. K79A demonstrated substantially improved binding while maintaining reasonable interfacial contacts. Detailed structural analysis revealed these mutations optimize the binding interface through strategic reorganization of molecular interactions and improved complementarity. Discussion. Our findings demonstrate that specific natural CCL2 mutations can substantially enhance CCR5 binding affinity, revealing unexpected plasticity in chemokine-receptor recognition systems. The most impactful mutations suggest evolutionary mechanisms for modulating HIV entry pathways through natural genetic variation. These results provide structural insights into how sequence variations might influence viral pathogenesis through altered receptor specificity and binding kinetics. Conclusion. This computational study identifies key CCL2 mutations that significantly enhance CCR5 binding, expanding our understanding of chemokine system flexibility and evolutionary adaptation. The results support further experimental investigation of natural CCL2 variants as potential modulators of HIV infection and contribute to fundamental knowledge of virus-host interactions at molecular level.

About the authors

V. S. Davydenko

St. Petersburg Pasteur Institute

Email: vladimir_david@mail.ru
ORCID iD: 0000-0003-0078-9681

Junior Researcher, Laboratory of Immunology and Virology of HIV Infection, PhD Student

Russian Federation, St. Petersburg

Alexandr N. Schemelev

St. Petersburg Pasteur Institute

Author for correspondence.
Email: tvildorm@gmail.com
ORCID iD: 0000-0002-3139-3674

PhD (Biology), Junior Researcher, Laboratory of Immunology and Virology of HIV Infection

Russian Federation, St. Petersburg

Y. V. Ostankova

St. Petersburg Pasteur Institute

Email: shenna1@yandex.ru
ORCID iD: 0000-0003-2270-8897

PhD (Biology), Head of the Laboratory of Immunology and Virology HIV-Infection, Senior Researcher, Laboratory of Molecular Immunology

Russian Federation, St. Petersburg

E. V. Anufrieva

St. Petersburg Pasteur Institute

Email: kate.an21@yandex.ru
ORCID iD: 0009-0002-1882-529X
SPIN-code: 5056-8485

Junior Researcher, Laboratory of Immunology and Virology of HIV Infection

Russian Federation, St. Petersburg

A. A. Totolian

St. Petersburg Pasteur Institute; Pavlov First St. Petersburg State Medical University

Email: pasteur@pasteurorg.ru
ORCID iD: 0000-0003-4571-8799

RAS Full Member, DSc (Medicine), Professor, Head of the Laboratory of Molecular Immunology, Director

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Давыденко В.С., Останкова Ю.В., Щемелев А.Н., Ануфриева Е.В., Кушнарева В.В., Тотолян А.А. Выявление генов человека, взаимодействующих с рецепторами прикрепления ВИЧ и потенциально участвующих в патогенезе заболевания, на основе мультисетевого биоинформатического анализа // ВИЧ-инфекция и иммуносупрессии. 2024. Т. 16, № 4. С. 28–44. [Davydenko V.S., Ostankova Yu.V., Schemelev A.N., Anufrieva E.V., Kushnareva V.V., Totolian A.A. Identification of human genes interacting with HIV attachment receptors and potentially involved in disease pathogenesis based on multi-network bioinformatics analysis. VICh-infektsiya i immunosupressii = HIV Infection and Immunosuppressive Disorders, 2024, vol. 16, no. 4, pp. 28–44. (In Russ.)] doi: 10.22328/2077-9828-2024-16-4-28-44
  2. Останкова Ю.В., Щемелев А.Н., Зуева Е.Б., Чурина М.А., Валутите Д.Э., Семенов А.В. Молекулярная эпидемиология и фармакорезистентность ВИЧ у пациентов с вирусологической неэффективностью антиретровирусной терапии в Архангельской области // ВИЧ-инфекция и иммуносупрессии. 2019. Т. 11, № 4. С. 79–90. [Ostankova Yu.V., Shchemelev A.N., Zueva E.B., Churina M.A., Valutite D.E., Semenov A.V. Molecular epidemiology and pharmaco-resistance of HIV in patients with antiretroviral therapy failure in Arkhangelsk district. VICh-infektsiya i immunosupressii = HIV Infection and Immunosuppressive Disorders, 2019, vol. 11, no. 4, pp. 79–90. (In Russ.)] doi: 10.22328/2077-9828-2019-11-4-79-90
  3. Щемелев А.Н., Семенов А.В., Останкова Ю.В., Зуева Е.Б., Валутите Д.Э., Семенова Д.А., Давыденко В.С., Тотолян А.А. Генетическое разнообразие и мутации лекарственной устойчивости ВИЧ-1 в Ленинградской области // Журнал микробиологии, эпидемиологии и иммунобиологии. 2022. Т. 99, № 1. С. 28–37. [Shchemelev A.N., Semenov A.V., Ostankova Yu.V., Zueva E.B., Valutite D.E., Semenova D.A., Davydenko V.S., Totolian A.A. Genetic diversity and drug resistance mutations of HIV-1 in Leningrad Region. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2022, vol. 99, no. 1, pp. 28–37. (In Russ.)] doi: 10.36233/0372-9311-216
  4. Щемелев А.Н., Семенов А.В., Останкова Ю.В., Найденова Е.В., Зуева Е.Б., Валутите Д.Э., Чурина М.А., Виролайнен П.А., Тотолян А.А. Генетическое разнообразие вируса иммунодефицита человека (ВИЧ-1) в Калининградской области // Вопросы вирусологии. 2022. Т. 67, № 4. С. 310–321. [Schemelev A.N., Semenov A.V., Ostankova Yu.V., Naidenova E.V., Zueva E.B., Valutite D.E., Churina M.A., Virolainen P.A., Totolian A.A. Genetic diversity of the human immunodeficiency virus (HIV-1) in the Kaliningrad region. Voprosy Virusologii = Problems of Virology, 2022, vol. 67, no. 4, pp. 310–321. (In Russ.)] doi: 10.36233/0507-4088-119
  5. Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A.J., Bambrick J., Bodenstein S.W., Evans D.A., Hung C.C., O’Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A.I., Cowie A., Figurnov M., Fuchs F.B., Gladman H., Jain R., Khan Y.A., Low C.M.R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E.D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J.M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, vol. 630, no. 8016, pp. 493–500. doi: 10.1038/s41586-024-07487-w
  6. Adzhubei I., Jordan D.M., Sunyaev S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet., 2013, vol. 76: 7.20.1-7.20.41. doi: 10.1002/0471142905.hg0720s76
  7. Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods, 2010, vol. 7, no. 4, pp. 248–249. doi: 10.1038/nmeth0410-248
  8. Ansari A.W., Heiken H., Moenkemeyer M., Schmidt R.E. Dichotomous effects of C-C chemokines in HIV-1 pathogenesis. Immunol. Lett., 2007, vol. 110, no. 1, pp. 1–5. doi: 10.1016/j.imlet.2007.02.012
  9. Ferenczy G.G., Kellermayer M. Contribution of hydrophobic interactions to protein mechanical stability. Comput. Struct. Biotechnol. J., 2022, vol. 20, pp. 1946–1956. doi: 10.1016/j.csbj.2022.04.025
  10. Garcia-Perez J., Rueda P., Staropoli I., Kellenberger E., Alcami J., Arenzana-Seisdedos F., Lagane B. New insights into the mechanisms whereby low molecular weight CCR5 ligands inhibit HIV-1 infection. J. Biol. Chem., 2011, vol. 286, no. 6, pp. 4978–4990. doi: 10.1074/jbc.M110.168955
  11. Garda Z., Nagy V., Rodríguez-Rodríguez A., Pujales-Paradela R., Patinec V., Angelovski G., Tóth É., Kálmán F., Esteban-Gómez D., Tripier R., Platas-Iglesias C., Tircsó G. Unexpected trends in the stability and dissociation kinetics of lanthanide(III) complexes with cyclen-based ligands across the lanthanide series. Inorg. Chem., 2020, vol. 59, no. 12, pp. 8184–8195. doi: 10.1021/acs.inorgchem.0c00520
  12. Gustavsson M., Dyer D.P., Zhao C., Handel T.M. Kinetics of CXCL12 binding to atypical chemokine receptor 3 reveal a role for the receptor N terminus in chemokine binding. Sci. Signal., 2019, vol. 12, no. 598: eaaw3657. doi: 10.1126/scisignal.aaw3657
  13. Global HIV & AIDS statistics — Fact sheet / UNAIDS 2024 epidemiological estimates. URL: https://www.unaids.org/en/resources/fact-sheet (14.08.2025)
  14. Hall S.E., Mao A., Nicolaidou V., Finelli M., Wise E.L., Nedjai B., Kanjanapangka J., Harirchian P., Chen D., Selchau V., Ribeiro S., Schyler S., Pease J.E., Horuk R., Vaidehi N. Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5. Mol. Pharmacol., 2009, vol. 75, no. 6, pp. 1325–1336. doi: 10.1124/mol.108.053470
  15. Jarnagin K., Grunberger D., Mulkins M., Wong B., Hemmerich S., Paavola C., Bloom A., Bhakta S., Diehl F., Freedman R., McCarley D., Polsky I., Ping-Tsou A., Kosaka A., Handel T.M. Identification of surface residues of the monocyte chemotactic protein 1 that affect signaling through the receptor CCR2. Biochemistry, 1999, vol. 38, no. 49, pp. 16167–16177. doi: 10.1021/bi9912239
  16. Koehl P., Delarue M. Polar and nonpolar atomic environments in the protein core: implications for folding and binding. Proteins, 1994, vol. 20, no. 3, pp. 264–278. doi: 10.1002/prot.340200307
  17. Krieger E., Vriend G. YASARA View — molecular graphics for all devices — from smartphones to workstations. Bioinformatics, 2014, vol. 30, no. 20, pp. 2981–2982. doi: 10.1093/bioinformatics/btu426
  18. Lee J., Hammarén H.M., Savitski M.M., Baek S.H. Control of protein stability by post-translational modifications. Nat. Commun., 2023, vol. 14, no. 1: 201. doi: 10.1038/s41467-023-35795-8
  19. Macdonald-Obermann J.L., Pike L.J. Extracellular domain mutations of the EGF receptor differentially modulate high-affinity and low-affinity responses to EGF receptor ligands. J. Biol. Chem., 2024, vol. 300, no. 3: 105763. doi: 10.1016/j.jbc.2024.105763
  20. Meng E.C., Goddard T.D., Pettersen E.F., Couch G.S., Pearson Z.J., Morris J.H., Ferrin T.E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci., 2023, vol. 32, no. 11: e4792. doi: 10.1002/pro.4792
  21. Moore J.P., Trkola A., Dragic T. Co-receptors for HIV-1 entry. Curr. Opin. Immunol., 1997, vol. 9, no. 4, pp. 551–562. doi: 10.1016/S0952-7915(97)80110-0
  22. Morningstar-Kywi N., Haworth I.S., Mosley S.A. Ligand-specific pharmacogenetic effects of nonsynonymous mutations. Pharmacogenet. Genomics, 2021, vol. 31, no. 4, pp. 75–82. doi: 10.1097/FPC.0000000000000424
  23. Paavola C.D., Hemmerich S., Grunberger D., Polsky I., Bloom A., Freedman R., Mulkins M., Bhakta S., McCarley D., Wiesent L., Wong B., Jarnagin K., Handel T.M. Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J. Biol. Chem., 1998, vol. 273, no. 50, pp. 33157–33165. doi: 10.1074/jbc.273.50.33157
  24. Schemelev A.N., Davydenko V.S., Ostankova Y.V., Reingardt D.E., Serikova E.N., Zueva E.B., Totolian A.A. Involvement of human cellular proteins and structures in realization of the HIV life cycle: a comprehensive review. Viruses, 2024, vol. 16, no. 11: 1682. doi: 10.3390/v16111682
  25. Schymkowitz J., Borg J., Stricher F., Nys R., Rousseau F., Serrano L. The FoldX web server: an online force field. Nucleic Acids Res., 2005, vol. 33, suppl. 2, pp. W382–W388. doi: 10.1093/nar/gki387
  26. Suruzhon M., Bodnarchuk M.S., Ciancetta A., Viner R., Wall I.D., Essex J.W. Sensitivity of binding free energy calculations to initial protein crystal structure. J. Chem. Theory Comput., 2021, vol. 17, no. 3, pp. 1806–1821. doi: 10.1021/acs.jctc.0c00972
  27. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2025. Nucleic Acids Res., 2025, vol. 53, no. D1, pp. D609-D617. doi: 10.1093/nar/gkae1010
  28. Thiele S., Steen A., Jensen P.C., Mokrosiński J., Frimurer T.M., Rosenkilde M.M. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach. J. Biol. Chem., 2011, vol. 286, no. 43, pp. 37543–37554. doi: 10.1074/jbc.M111.243808
  29. Toyama B.H., Savas J.N., Park S.K., Harris M.S., Ingolia N.T., Yates J.R., Hetzer M.W. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell, 2013, vol. 154, no. 5, pp. 971–982. doi: 10.1016/j.cell.2013.07.037
  30. Xiao T., Cai Y., Chen B. HIV-1 entry and membrane fusion inhibitors. Viruses, 2021, vol. 13, no. 5: 735. doi: 10.3390/v13050735
  31. Yoon V., Fridkis-Hareli M., Munisamy S., Lee J.B., Anastasiades D., Stevceva L. The GP120 molecule of HIV-1 and its interaction with T cells. Curr. Med. Chem., 2010, vol. 17, no. 8, pp. 741–749. doi: 10.2174/092986710790514499

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Davydenko V.S., Schemelev A.N., Ostankova Y.V., Anufrieva E.V., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).