Association between toll-like receptor genes polymorphism (TLR2, TLR4, and TLR6) and SARS-CoV-2 infection in the West Siberian region of Russia

Cover Page

Cite item

Full Text

Abstract

The presence of preceding cardiovascular disease (CVD) is an important risk factor for the severe clinical course of COVID-19. In addition, COVID-19 is often aggravated by cardiovascular complications. The relationship between COVID-19 and the cardiovascular system is very complex and has not been studied. When infected with SARS-CoV-2, the innate immune response is activated through the toll-like receptors (TLRs) family. And TLR role in the pathogenesis of cardiovascular diseases is important. The aim of the study was to conduct the comprehensive comparative analysis by assessing toll-like receptor TLR2 (rs5743708), TLR4 (rs4986790, rs4986791), TLR6 (rs5743810), TLR6 (rs5743810) gene polymorphism in COVID-19 convalescent patients to identify markers for disease susceptibility, severity of the course and development of cardiovascular complications. 260 patients with COVID-19 of varying severity degrees were examined. Groups with mild, moderate, and severe disease, groups with history of cardiovascular issues, and COVID-19 convalescent patients newly diagnosed with them were identified. Single nucleotide polymorphisms TLR2 (rs5743708), TLR4 (rs4986790, rs4986791), TLR6 (rs5743810) were analyzed by real-time PCR. Statistical was carried out by using SPSS 23.0 software. Gene allele and genotype rates were assessed by using a two-way Fisher criterion, and in cases of multiple comparisons, the Bonferroni correction. An increase of TLR2G and TLR2GG was revealed in COVID-19 patients. Heterozygosity in this position was significantly reduced in the group of patients. No differences in the frequencies of genotypes between groups with different disease severity was observed. TLR2-753 ArgArg:TLR4-299 AspGly:TLR4-399 ThrThr were decreased in patients with a combined moderate-severe vs. mild COVID-19. CVD patients with TLR4-299 AspAsp, TLR4-299 AspAsp:TLR4-399ThrThr were significantly more likely to suffer from severe COVID-19. The complex TLR4-299 AspGly:TLR4-399 ThrThr and TLR2-753 ArgArg:TLR4-299 AspGly:TLR4-399 ThrThr are associated with a milder disease course. Six complexes were identified, the frequency of which is significantly higher in COVID-19 convalescent patients with cardiovascular complications. These data confirm that the TLR polymorphism affects COVID-19 development and clinical diversity.

About the authors

Alla V. Shevchenko

Research Institute of Clinical and Experimental Lymphology — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Author for correspondence.
Email: shalla64@mail.ru
ORCID iD: 0000-0001-5898-950X

DSc (Biology), Leading Researcher, Laboratory of Clinical Immunogenetics

Russian Federation, Novosibirsk

V. F. Prokofiev

Research Institute of Clinical and Experimental Lymphology — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: vf_prok@mail.ru
ORCID iD: 0000-0001-7290-1631

PhD (Medicine), Leading Researcher, Laboratory of Clinical Immunogenetics

Russian Federation, Novosibirsk

V. I. Konenkov

Research Institute of Clinical and Experimental Lymphology — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: vikonenkov@gmail.com
ORCID iD: 0000-0001-7385-6270

DSc (Medicine), Professor, RAS Full Member, Head of the Laboratory of Clinical Immunogenetics, Principal Investigator

Russian Federation, Novosibirsk

A. A. Karaseva

Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: Sas96@bk.ru
ORCID iD: 0000-0002-0423-5021

Junior Researcher, Laboratory of Genetic and Environmental Determinants of the Human Life Cycle

Russian Federation, Novosibirsk

A. D. Afanaseva

Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: alena.dmytryevna@yandex.ru
ORCID iD: 0000-0001-7875-1566

PhD (Medicine), Head of the Laboratory of Genetic and Environmental Determinants of the Human Life Cycle

Russian Federation, Novosibirsk

I. I. Logvinenko

Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: 111157@mail.ru
ORCID iD: 0000-0003-1348-0253

DSc (Medicine), Professor, Head Researcher, Laboratory of Preventive Medicine

Russian Federation, Novosibirsk

References

  1. Евдокимов А.В., Суслова Т.А., Беляева С.В., Бурмистрова А.Л., Сташкевич Д.С. Полиморфизм генов TLR и течение двусторонней пневмонии при COVID-19 // Медицинский академический журнал. 2021. Т. 21, № 4. C. 57–66. [Evdokimov A.V., Suslova T.A., Belyaeva S.V., Burmistrova A.L., Stashkevich D.S. Polymorphism of TLR genes and the course of COVID-19 bilateral pneumonia. Meditsinskii akademicheskii zhurnal = Medical Academic Journal, 2021, vol. 21, no. 4, pp. 57–66. (In Russ.)] doi: 10.17816/MAJ90324
  2. Наркевич А.Н., Виноградов К.А., Гржибовский А.М. Множественные сравнения в биомедицинских исследованиях: проблема и способы решения // Экология человека. 2020. № 10. С. 55–64. [Narkevich A.N., Vinogradov K.A., Grjibovski A.M. Multiple Comparisons in Biomedical Research: the Problem and its Solutions. Ekologiya cheloveka = Human Ecology, 2020, no. 10, pp. 55–64. (In Russ.)] doi: 10.33396/1728-0869-2020-10-55-64
  3. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации. Версия 15 от 22.02.2022. М., 2022. 233 с. [Prevention, diagnosis and treatment of new coronavirus infection (COVID-19): Interim guidelines. Version 15 dated 22.02.2022. Moscow, 2022. 233 p. (In Russ.)]
  4. Решетникова И.Д., Тюрин Ю.А., Мустафин И.Г., Агафонова Е.В., Шайхразиева Н.Д. Изучение молекулярно-генетических и иммунологических предикторов течения COVID-19 в группе риска «медицинские работники» // Инфекция и иммунитет. 2024. Т. 14, № 2. C. 289–298. [Reshetnikova I.D., Tyurin Yu.A., Mustafin I.G., Agafonova E.V., Shaikhrazieva N.D. Assessing molecular genetic and immunological predictors of COVID-19 course in healthcare worker risk group. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2024, vol. 14, no. 2, pp. 289–298. (In Russ.)] doi: 10.15789/2220-7619-AMG-10359
  5. Aboudounya M.M., Heads R.J. COVID-19 and Toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation. Mediat. Inflamm., 2021, vol. 2021: 8874339. doi: 10.1155/2021/8874339
  6. Akira S., Takeda K., Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol., 2001, vol. 2, no. 8, pp. 675–680. doi: 10.1038/90609
  7. Alhabibi A.M., Hassan A.S., Abd Elbaky N.M., Eid H.A., Khalifa M.A., Wahab M.A., Althoqapy A.A., Abdou A.E., Zakaria D.M., Nassef E.M., Kasim S.A., Saleh O.I., Elsheikh A.A., Lotfy M., Sayed A. Impact of Toll-Like Receptor 2 and 9 Gene Polymorphisms on COVID-19: Susceptibility, Severity, and Thrombosis. J. Inflamm. Res., 2023, vol. 17, no. 16, pp. 665–675. doi: 10.2147/JIR.S394927
  8. Ali H.N., Niranji S.S., Al-Jaf S.M.A. Association of Toll-like receptor-4 polymorphism with SARS-CoV-2 infection in Kurdish Population. Hum. Gene, 2022, vol. 34: 201115. doi: 10.1016/j.humgen.2022.201115
  9. Bagheri B., Feyzabadi Z.K., Nouri A., Azadfallah A., Ari M.M., Hemmati M., Darban M., Toosi P.A., Banihashemian S.Z. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediat. Inflamm., 2024, vol. 2024: 5830491. doi: 10.1155/2024/5830491
  10. Bakaros E., Voulgaridi I., Paliatsa V., Gatselis N., Germanidis G., Asvestopoulou E., Alexiou S., Botsfari E., Lygoura V., Tsachouridou O., Mimtsoudis I., Tseroni M., Sarrou S., Mouchtouri V.A., Dadouli K., Kalala F., Metallidis S., Dalekos G., Hadjichristodoulou C., Speletas M. Innate Immune Gene Polymorphisms and COVID-19 Prognosis. Viruses, 2023, vol. 15, no. 9, pp. 1784–1799. doi: 10.3390/v15091784
  11. Bavishi C., Bonow R.O., Trivedi V., Abbott J.D., Messerli F.H., Bhatt D.L. Acute myocardial injury in patients hospitalized with COVID-19 infection: A review. Prog. Cardiovasc. Dis., 2020, vol. 63, no. 5, pp. 682–689. doi: 10.1016/j.pcad.2020.05.013
  12. Brandão S.C.S., de Ramos J.O.X., Dompieri L.T., Godoi E.T.A.M., Figueiredo J.L., Sarinho E.S.C., Chelvanambi S., Aikawa M. Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine Growth Factor Rev., 2021, vol. 58, pp. 102–110. doi: 10.1016/j.cytogfr.2020.09.002
  13. Chen R., Gu N., Gao Y., Cen W. TLR4 Asp299Gly (rs4986790) polymorphism and coronary artery disease: a meta-analysis. PeerJ., 2015, vol. 3: e1412. doi: 10.7717/peerj.1412
  14. Choudhury A., Mukherjee S. In Silico Studies on the Comparative Characterization of the Interactions of SARS-CoV-2 Spike Glycoprotein with ACE-2 Receptor Homologs and Human TLRs. J. Med. Virol., 2020, vol. 92, no. 9, pp. 2105–2113. doi: 10.1002/jmv.25987
  15. Duan T., Du Y., Xing C., Wang H.Y., Wang R.-F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol., 2022, vol. 13: 812774. doi: 10.3389/fimmu.2022.812774
  16. Flores-Gonzalez J., Chavez-Galan L., Falfán-Valencia R., Roldán I.B., Fricke-Galindo I., Veronica-Aguilar A., Martínez-Morales A., Hernández-Zenteno R.J., Guzmán-Guzmán I.P., Pérez-Rubio G. Variant rs4986790 of toll-like receptor 4 affects the signaling and induces cell dysfunction in patients with severe COVID-19. Int. J. Infect. Dis., 2024, vol. 138, pp. 102–109. doi: 10.1016/j.ijid.2023.11.032
  17. Fore F., Indriputri C., Mamutse J., Nugraha J. TLR10 and its unique antiinflammatory properties and potential use as a target in therapeutics. Immune Netw., 2020, vol. 20, no. 3: e21. doi: 10.4110/in.2020.20.e21
  18. Hold G.L., Berry S., Saunders K.A., Drew J., Mayer C., Brookes H., Gay N.J., El-Omar E.M., Bryant C.E. The TLR4 D299G and T399I SNPs are constitutively active to up-regulate expression of trif-dependent genes. PLoS One, 2014, vol. 9: e111460. doi: 10.1371/journal.pone.0111460
  19. Hua Z., Hou B. TLR Signaling in B-Cell Development and Activation. Cell Mol. Immunol., 2013, vol. 10, no. 2, pp. 103–106. doi: 10.1038/cmi.2012.6118
  20. Kemerley A., Gupta A., Thirunavukkarasu M., Maloney M., Burgwardt S., Maulik N. COVID-19 Associated Cardiovascular Disease — Risks, Prevention and Management: Heart at Risk Due to COVID-19. Curr. Issues Mol. Biol., 2024, vol. 46, no. 3, pp. 1904–1920. doi: 10.3390/cimb46030124
  21. Kiechl S., Lorenz E., Reindl M., Wiedermann C.J., Oberhollenzer F., Bonora E., Willeit J., Schwartz D.A. Toll-like Receptor 4 Polymorphisms and Atherogenesis. N. Engl. J. Med., 2002, vol. 347, no. 3, pp. 185–192. doi: 10.1056/NEJMoa012673
  22. Lester S.N., Li K. Toll-like receptors in antiviral innate immunity. J. Mol. Biol., 2014, vol. 426, no. 6, pp. 1246–1264. doi: 10.1016/j.jmb.2013.11.024
  23. McClure R., Massari P. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens. Front. Immunol., 2014, vol. 5: 386. doi: 10.3389/fimmu.2014.00386
  24. Mukherjee S., Bayry J. The Yin and Yang of TLR4 in COVID-19. Cytokine Growth Factor Rev., 2024, vol. 82, pp. 70–85. doi: 10.1016/j.cytogfr.2024.10.001
  25. Ntchana A., Shrestha S., Pippin M. Cardiovascular Complications of COVID-19: A Scoping Review of Evidence. Cureus, 2023, vol. 15, no. 11: e48275. doi: 10.7759/cureus.48275
  26. Sharma S., Garg I., Ashraf M.Z. TLR signalling and association of TLR polymorphism with cardiovascular diseases. Vascul. Pharmacol., 2016, vol. 87, pp. 30–37. doi: 10.1016/j.vph.2016.10.008
  27. Sutmuller R.P.M., Morgan M.E., Netea M.G., Grauer O., Adema G.J. Toll-Like Receptors on Regulatory T Cells: Expanding Immune Regulation. Trends Immunol., 2006, vol. 27, no. 8, pp. 387–393. doi: 10.1016/j.it.2006.06.005
  28. Taha S.I., Shata A.K., Baioumy S.A., Fouad S.H., Anis S.G., Mossad I.M., Moustafa N.M., Abdou D.M., Youssef M.K. Toll-Like Receptor 4 Polymorphisms (896A/G and 1196C/T) as an Indicator of COVID-19 Severity in a Convenience Sample of Egyptian Patients. J. Inflamm. Res., 2021, vol. 14, pp. 6293–6303. doi: 10.2147/JIR.S343246
  29. Taha S.I., Shata A.K., El-Sehsah E.M., Mohamed M.F., Moustafa N.M., Youssef M.K. Comparison of COVID-19 characteristics in Egyptian patients according to their Toll-Like Receptor-4 (Asp299Gly) polymorphism. Infez. Med., 2022, vol. 30, pp. 96–103. doi: 10.53854/liim-3001-11
  30. Tapping R.I., Omueti K.O., Johnson C.M. Genetic polymorphisms within the human Toll-like receptor 2 subfamily. Biochem. Soc. Trans., 2007, vol. 35, no. 6, pp. 1445–1448. doi: 10.1042/BST0351445
  31. Vidal-Perez R., Brandão M., Pazdernik M., Kresoja K.P., Carpenito M., Maeda S., Casado-Arroyo R., Muscoli S., Pöss J., Fontes-Carvalho R., Vazquez-Rodriguez J.M. Cardiovascular disease and COVID-19, a deadly combination: A review about direct and indirect impact of a pandemic. World J. Clin. Cases, 2022, vol. 10, no. 27, pp. 9556–9572. doi: 10.12998/wjcc.v10.i27.9556
  32. Xie X., Shi X., Liu M. The Roles of TLR Gene Polymorphisms in Atherosclerosis: A Systematic Review and Meta-Analysis of 35,317 Subjects. Scand. J. Immunol., 2017, vol. 86, no. 1, pp. 50–58. doi: 10.1111/sji.12560
  33. Zacher C., Schönfelder K., Rohn H., Siffert W., Möhlendick B. The single nucleotide polymorphism rs4986790 (c.896A>G) in the gene TLR4 as a protective factor in corona virus disease 2019 (COVID-19). Front. Immunol., 2024, vol. 15: 1355193. doi: 10.3389/fimmu.2024.1355193
  34. Zhang K., Zhang L., Zhou B., Wang Y., Song Y., Rao L., Zhang L. Lack of association between TLR4 Asp299Gly polymorphism and atherosclerosis: evidence from meta-analysis. Thromb. Res., 2012, vol. 130, no. 4, pp. e203-e208. doi: 10.1016/j.thromres.2012.07.008
  35. Zhang Y., Liu J., Wang C., Liu J., Lu W. Toll-Like receptors gene polymorphisms in autoimmune disease. Front. Immunol., 2021, vol. 12: 672346. doi: 10.3389/fimmu.2021.672346
  36. Zhao Y., Kuang M., Li J., Zhu L., Jia Z., Guo X., Hu Y., Kong J., Yin H., Wang X., You F. Publisher Correction: SARS-CoV-2 Spike Protein Interacts with and Activates TLR4. Cell Res., 2021, vol. 31: 825. doi: 10.1038/s41422-021-00501-0
  37. Zheng M., Karki R., Williams E.P., Yang D., Fitzpatrick E., Vogel P., Jonsson C.B., Kanneganti T.D. TLR2 Senses the SARS-CoV-2 Envelope Protein to Produce Inflammatory Cytokines. Nat. Immunol., 2021, vol. 22, pp. 829–838. doi: 10.1038/s41590-021-00937-x
  38. Ziakas P.D., Prodromou M.L., Khoury J., Zintzaras E., Mylonakis E. The role of TLR4 896 A>G and 1196 C>T in susceptibility to infections: a review and meta-analysis of genetic association studies. PLoS One, 2013, vol. 8, no. 11: e81047. doi: 10.1371/journal.pone.0081047

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Shevchenko A.V., Prokofiev V.F., Konenkov V.I., Karaseva A.A., Afanaseva A.D., Logvinenko I.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).