CD8 T cells in mice with different genetic susceptibility to anti-tuberculous immune response

Cover Page

Cite item

Full Text

Abstract

In spite of decades of studying the role for CD8+ T-cells in response to tuberculosis (TB) infection, it remains only partly understood. Even less is known how the level of host genetic susceptibility to TB infection influences the involvement of these cells in immune response. Our lab established MHC II-congenic mouse strains with different levels of genetic susceptibility to TB infection dependent exclusively upon quantitative and qualitative differences in organization of relevant CD4 T-cell populations and lacking major defects in immune systems. In the present work, we investigated how the in vivo lack of CD8+ T-cells affects related capacity to combat TB infection. To this end, we developed a novel double-congenic mouse strain В6.I-9.3-β2M–/– that lacks CD8 T cells due to a knockout mutation in the gene encoding β2-microglobulin and differs from the parental B6 strain by the MHC II allele. We performed a comparative study of TB development and immune response using four mouse strains: the ancestor В6 and B6.I-9.3 pair vs. CD8-deficient В6-β2M–/– and В6.I-9.3-β2M–/– pair. CD8 T-cell deficiency did not alter lung mycobacterial multiplication during the first 4 weeks post TB challenge; however, at day 90 lung mycobacterial population increased to significantly higher levels in В6-β2M–/– compared to B6 mice. Post-infection life span of both CD8 T-cell-deficient mouse strains was dramatically shorter than that of the wild type animals. En mass, negative effects of CD8 cell deficiency looked more pronounced on the MHC II allele background, which in the presence of CD8 cells is associated with better protection against infection. In addition, the lack of CD8+ cells resulted in significantly decreased size of TNF-positive CD4+ T-cell populations in mice from both β2M–/– strains at week 4 post-challenge. This is consistent with a previously non-described helper function of CD8 cells for the TNF synthesis by CD4 cells. We discuss the results obtained within the context of dynamical interactions between T-cell populations during chronic TB infection.

About the authors

N. N. Logunova

Central Tuberculosis Research Institute

Email: nadezda2004@yahoo.com

PhD (Medicine), Senior Researcher, Laboratory of Immunogenetics

Russian Federation, Moscow

M. A. Kapina

Central Tuberculosis Research Institute

Email: makapina@mail.ru

PhD (Biology), Senior Researcher, Laboratory of Immunogenetics

Russian Federation, Moscow

I. A. Linge

Central Tuberculosis Research Institute

Email: iralinge@gmail.com

PhD (Biology), Leading Researcher, Laboratory of Immunogenetics, Immunology Department

Russian Federation, Moscow

E. V. Kondratieva

Central Tuberculosis Research Institute

Email: alyonakondratyeva74@gmail.com

PhD (Biology), Senior Researcher, Laboratory of Immunogenetics, Immunology Department

Russian Federation, Moscow

Alexander S. Apt

Central Tuberculosis Research Institute

Author for correspondence.
Email: alexapt0151@gmail.com

DSc (Biology), Professor, Head of the Laboratory of Immunogenetics, Immunology Department

Russian Federation, Moscow

References

  1. Allie N., Grivennikov S.I., Keeton R., Hsu N.J., Bourigault M.L., Court N., Fremond C., Yeremeev V., Shebzukhov Y., Ryffel B., Nedospasov S.A., Quesniaux V.F., Jacobs M. Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci. Rep., 2013, vol. 3: 1809. doi: 10.1038/srep01809
  2. Billerbeck E., Wolfisberg R., Fahnoe U., Xiao J.W., Quirk C., Luna J.M., Cullen J.M., Hartlage A.S., Chiriboga L., Ghoshal K., Lipkin W.I., Bukh J., Scheel T., Kapoor A., Rice C.M. Mouse models of acute and chronic hepacivirus infection. Science, 2017, vol. 357, no. 6347, pp. 204–208. doi: 10.1126/science.aal1962
  3. Cadena A.M., Flynn J.L., Fortune S.M. The importance of first impressions: early events in Mycobacterium tuberculosis infection influence outcome. mBio, 2016, vol. 7, no. 2: e00342-16. doi: 10.1128/mBio.00342-16
  4. Chan E.D., Chan J., Schluger N.W. What is the role of nitric oxide in murine and human host defense against tuberculosis? Current knowledge. Am. J. Respir. Cell. Mol. Biol., 2001, vol. 25, no. 5, pp. 606–612. doi: 10.1165/ajrcmb.25.5.4487
  5. Chang E., Cavallo K., Behar S.M. CD4 T cell dysfunction is associated with bacterial recrudescence during chronic tuberculosis. Nat. Commun., 2025, vol. 16, no. 1: 2636. doi: 10.1038/s41467-025-57819-1
  6. Cooper A.M., D’Souza C., Frank A.A., Orme I.M. The course of Mycobacterium tuberculosis infection in the lungs of mice lacking expression of either perforin- or granzyme-mediated cytolytic mechanisms. Infect. Immun., 1997, vol. 65, no. 4, pp. 1317–1320. doi: 10.1128/iai.65.4.1317-1320.1997
  7. Derrick S.C., Yabe I.M., Yang A., Morris S.L. Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells. Vaccine, 2011, vol. 29, no. 16, pp. 2902–2909. doi: 10.1016/j.vaccine.2011.02.010
  8. Dutronc Y., Porcelli S.A. The CD1 family and T cell recognition of lipid antigens. Tissue Antigens, 2002, vol. 60, no. 5, pp. 337–353. doi: 10.1034/j.1399-0039.2002.600501.x
  9. Flynn J.L., Goldstein M.M., Triebold K.J., Koller B., Bloom B.R. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl Acad. Sci. USA, 1992, vol. 89, no. 24, pp. 12013–12017. doi: 10.1073/pnas.89.24.12013
  10. Hunter R.L., Actor J.K., Hwang S.A., Khan A., Urbanowski M.E., Kaushal D., Jagannath C. Pathogenesis and animal models of post-primary (bronchogenic) tuberculosis. A review. Pathogens, 2018, vol. 7, no. 1: 19. doi: 10.3390/pathogens7010019
  11. Jaiswal S., Fatima S., de la Cruz E.V., Kumar S. Unraveling the role of the immune landscape in tuberculosis granuloma. Tuberculosis (Edinb.), 2025, vol. 152: 102615. doi: 10.1016/j.tube.2025.102615
  12. Kireev F.D., Lopatnikova J.A., Alshevskaya A.A., Sennikov S.V. Role of tumor necrosis factor in tuberculosis. Biomolecules, 2025, vol. 15, no. 5: 709. doi: 10.3390/biom15050709
  13. Kondratieva E., Logunova N., Majorov K., Averbakh M., Apt A. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PLoS One, 2010, vol. 5, no. 5: e10515. doi: 10.1371/journal.pone.0010515
  14. Laochumroonvorapong P., Wang C.-C., Liu W., Ye A.L., Moreira K.B., Elkon V., Freedman H., Kaplan G. Perforin, a cytotoxic molecule which mediates cell necrosis, is not required for the early control of mycobacterial infection in mice. Infect. Immun., 1997, vol. 65, no. 1, pp. 127–132. doi: 10.1128/iai.65.1.127-132.1997
  15. Lewinsohn D.A., Winata E., Swarbrick G.M., Tanner K.E., Cook M.S., Null M.D., Cansler M.E., Sette A., Sidney J., Lewinsohn D.M. Immunodominant tuberculosis CD8 antigens preferentially restricted by HLA-B. PLoS Pathog., 2007, vol. 3, no. 9, pp. 1240–1249. doi: 10.1371/journal.ppat.0030127
  16. Lin P.L., Flynn J.L. CD8 T cells and Mycobacterium tuberculosis infection. Semin. Immunopathol., 2015, vol. 37, no. 3, pp. 239–249. doi: 10.1007/s00281-015-0490-8
  17. Logunova N., Kapina M., Dyatlov A., Kondratieva T., Rubakova E., Majorov K., Kondratieva E., Linge I., Apt A. Polygenic TB control and the sequence of innate/adaptive immune responses to infection: MHC-II alleles determine the size of the S100A8/9-producing neutrophil population. Immunology, 2024, vol. 173, no. 2, pp. 381–393. doi: 10.1111/imm.13836
  18. Logunova N., Korotetskaya M., Polshakov V., Apt A. The QTL within the H2 complex involved in the control of tuberculosis infection in mice is the classical Class II H2-Ab1 gene. PLoS Genet., 2015, vol. 11, no. 11: e1005672. doi: 10.1371/journal.pgen.1005672
  19. Logunova N.N., Kriukova V.V., Shelyakin P.V., Egorov E.S., Pereverzeva A., Bozhanova N.G., Shugay M., Shcherbinin D.S., Pogorelyy M.V., Merzlyak E.M., Zubov V.N., Meiler J., Chudakov D.M., Apt A.S., Britanova O.V. MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4+ T cells. Proc. Natl Acad. Sci. USA, 2020, vol. 117, no. 24, pp. 13659–13669. doi: 10.1073/pnas.2003170117
  20. Lopez-Scarim J., Mendoza D., Nambiar S.M., Billerbeck E. CD4+ T cell help during early acute hepacivirus infection is critical for viral clearance and the generation of a liver-homing CD103+CD49a+ effector CD8+ T cell subset. PLoS Pathog., 2024, vol. 20, no. 10: e1012615. doi: 10.1371/journal.ppat.1012615
  21. Lu Y.J., Barreira-Silva P., Boyce S., Powers J., Cavallo K., Behar S.M. CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Rep., 2021, vol. 36, no. 11: 109696. doi: 10.1016/j.celrep.2021.109696
  22. Lyadova I.V., Eruslanov E.B., Khaidukov S.V., Yeremeev V.V., Majorov K.B., Pichugin A.V., Nikonenko B.V., Kondratieva T.K., Apt A.S. Comparative analysis of T lymphocytes recovered from the lungs of mice genetically susceptible, resistant, and hyperresistant to Mycobacterium tuberculosis-triggered disease. J. Immunol., 2000, vol. 165, no. 10, pp. 5921–5931. doi: 10.4049/jimmunol.165.10.5921
  23. Majorov K.B., Lyadova I.V., Kondratieva T.K., Eruslanov E.B., Rubakova E.I., Orlova M.O., Mischenko V.V., Apt A.S. Different innate ability of I/St and A/Sn mice to combat virulent Mycobacterium tuberculosis: phenotypes expressed in lung and extrapulmonary macrophages. Infect. Immun., 2003, vol. 71, no. 2, pp. 697–707. doi: 10.1128/IAI.71.2.697-707.2003
  24. McLane L.M., Abdel-Hakeem M.S., Wherry E.J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol., 2019, vol. 37, pp. 457–495. doi: 10.1146/annurev-immunol-041015-055318
  25. Medina E., North R.J. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology, 1998, vol. 93, no. 2, pp. 270–744. doi: 10.1046/j.1365-2567.1998.00419.x
  26. Mott D., Yang J., Baer C., Papavinasasundaram K., Sassetti C.M., Behar S.M. High bacillary burden and the ESX-1 type VII secretion system promote MHC Class I presentation by Mycobacterium tuberculosis-infected macrophages to CD8 T cells. J. Immunol., 2023, vol. 210, no. 10, pp. 1531–1542. doi: 10.4049/jimmunol.2300001
  27. Patankar Y.R., Sutiwisesak R., Boyce S., Lai R., Lindestam Arlehamn C.S., Sette A., Behar S.M. Limited recognition of Mycobacterium tuberculosis-infected macrophages by polyclonal CD4 and CD8 T cells from the lungs of infected mice. Mucosal Immunol., 2020, vol. 13, no. 1, pp. 140–148. doi: 10.1038/s41385-019-0217-6
  28. Paterson R.L., La Manna M.P., Arena De Souza V., Walker A., Gibbs-Howe D., Kulkarni R., Fergusson J.R., Mulakkal N.C., Monteiro M., Bunjobpol W., Dembek M., Martin-Urdiroz M., Grant T., Barber C., Garay-Baquero D.J., Tezera L.B., Lowne D., Britton-Rivet C., Pengelly R., Chepisiuk N., Singh P.K., Woon A.P., Powlesland A.S., McCully M.L., Caccamo N., Salio M., Badami G.D., Dorrell L., Knox A., Robinson R., Elkington P., Dieli F., Lepore M., Leonard S., Godinho L.F. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA, 2024, vol. 121, no. 19: e2318003121. doi: 10.1073/pnas.2318003121
  29. Radaeva T.V., Nikonenko B.V., Mischenko V.V., Averbakh M.M., Apt A.S. Direct comparison of low-dose and Cornell-like models of chronic and reactivation tuberculosis in genetically susceptible I/St and resistant B6 mice. Tuberculosis (Edinb.), 2005, vol. 85, no. 1-2, pp. 65–72. doi: 10.1016/j.tube.2004.09.014
  30. Reilly E.C., Sportiello M., Emo K.L., Amitrano A.M., Jha R., Kumar A.B.R., Laniewski N.G., Yang H., Kim M., Topham D.J. CD49a identifies polyfunctional memory CD8 T cell subsets that persist in the lungs after influenza infection. Front. Immunol., 2021, vol. 12: 728669. doi: 10.3389/fimmu.2021.728669
  31. Rodo M.J., Rozot V., Nemes E., Dintwe O., Hatherill M., Little F., Scriba T.J. A comparison of antigen-specific T cell responses induced by six novel tuberculosis vaccine candidates. PLoS Pathog., 2019, vol. 15, no. 3: e1007643. doi: 10.1371/journal.ppat.1007643
  32. Stenger S., Hanson D.A., Teitelbaum R., Dewan P., Niazi K.R., Froelich C.J., Ganz T., Thoma-Uszynski S., Melián A., Bogdan C., Porcelli S.A., Bloom B.R., Krensky A.M., Modlin R.L. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science, 1998, vol. 282, no. 5386, pp. 121–125. doi: 10.1126/science.282.5386.121
  33. Silva B.D.S., Trentini M.M., da Costa A.C., Kipnis A., Junqueira-Kipnis A.P. Different phenotypes of CD8+ T cells associated with bacterial load in active tuberculosis. Immunol. Lett., 2014, vol. 160, no. 1, pp. 23–32. doi: 10.1016/j.imlet.2014.03.009
  34. Tascon R.E., Stavropoulos E., Lukacs K.V., Colston M.J. Protection against Mycobacterium tuberculosis infection by CD8+ T cells requires the production of gamma interferon. Infect. Immun., 1998, vol. 66, no. 2, pp. 830–834. doi: 10.1128/IAI.66.2.830-834.1998
  35. Thakur P., Sutiwisesak R., Lu Y.J., Behar S.M. Use of the human granulysin transgenic mice to evaluate the role of granulysin expression by CD8 T cells in immunity to Mycobacterium tuberculosis. mBio, 2022, vol. 13, no. 6: e03020-22. doi: 10.1128/mbio.03020-22
  36. Vats D., Rani G., Arora A., Sharma V., Rathore I., Mubeen S.A., Singh A. Tuberculosis and T cells: Impact of T cell diversity in tuberculosis infection. Tuberculosis (Edinb.), 2024, vol. 149: 102567. doi: 10.1016/j.tube.2024
  37. Yang J.D., Mott D., Sutiwisesak R., Lu Y.J., Raso F., Stowell B., Babunovic G.H., Lee J., Carpenter S.M., Way S.S., Fortune S.M., Behar S.M. Mycobacterium tuberculosis-specific CD4+ and CD8+ T cells differ in their capacity to recognize infected macrophages. PLoS Pathog., 2018, vol. 14, no. 5: e1007060. doi: 10.1371/journal.ppat.1007060

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Logunova N.N., Kapina M.A., Linge I.A., Kondratieva E.V., Apt A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).