CAR-NK therapy: NK cell expansion exposed to HEK 293T cell line
- Authors: Fedorova P.O.1,2,3, Chikileva I.O.3, Kiselevskiy M.V.3
-
Affiliations:
- Sechenov First Moscow State Medical University
- I. Mechnikov Research Institute of Vaccines and Sera
- Research Institute of Experimental Therapy and Diagnostics of Tumor, N.N. Blokhin National Medical Research Center of Oncology
- Issue: Vol 15, No 5 (2025)
- Pages: 855-870
- Section: ORIGINAL ARTICLES
- URL: https://ogarev-online.ru/2220-7619/article/view/380205
- DOI: https://doi.org/10.15789/2220-7619-CNT-17941
- ID: 380205
Cite item
Full Text
Abstract
While creating chimeric antigen receptor (CAR) NK cells, it is necessary to conduct a stage of these immune cell enrichment. Feeder cells are most often used in methods for the effective NK cell expansion. The human embryonic kidney cell line containing the SV40 T-antigen (HEK 293T) is most often used for research purposes in various areas, since it is easily subjected to genetic modifications. This property indicates the potential for modifying HEK 293T cells to express tumor antigens or proinflammatory cytokines, which can be used to activate and enrich NK cells. In this work, we assessed the effect of unmodified HEK 293T cell culture on cytotoxicity and expression of NK and NKT cell activation markers in long-term cultivation in the presence of non-irradiated autologous feeder cells. The study used peripheral blood mononuclear cells collected from healthy volunteer donors. Proliferation was stimulated using antibodies against CD3 and CD28 receptors or mitomycin C-treated HEK 293T cell culture. Cell proliferation was assessed by direct cell counting added with trypan blue dye. Cytotoxicity was determined on HG3, T47D-HER2+, K562 target cultures. Flow cytometry with labeled monoclonal antibodies was used to analyze the expression of surface receptors. Four different methods for lymphocyte activation using HEK 293T were proposed. We found that when using the HEK 293T cell line, an increased percentage of CD3–CD56+ cells in the population was observed in all activation modes, as well as increased expression of NK cell activation markers — NKp30 and NKG2D, in addition, the proportion of CD16+ and CD3+CD4+ lymphocytes increased relative to activation with monoclonal antibodies alone. Of the proposed options for coincubation of lymphocytes with HEK 293T feeder cells, the most effective NK cells expansion was described for the protocol involving the use of the HEK 293T cell line once before the onset of incubation without proliferation additionally stimulated with monoclonal antibodies. This approach resulted in higher proportion of CD56+ lymphocytes reaching to 60% as early as on day 4 of cultivation. Thus, HEK 293T cells stimulate NK cells division, therefore, they can be used as feeder cells in a CAR NK cell product development.
About the authors
Polina O. Fedorova
Sechenov First Moscow State Medical University; I. Mechnikov Research Institute of Vaccines and Sera; Research Institute of Experimental Therapy and Diagnostics of Tumor, N.N. Blokhin National Medical Research Center of Oncology
Author for correspondence.
Email: ppolite@mail.ru
ORCID iD: 0000-0001-7478-8783
Assistant Professor, Department of Microbiology, Virology and Immunology, Junior Researcher, Laboratory of Applied Virology, Research Laboratory Assistant, Laboratory of Cellular Immunity
Russian Federation, Moscow; Moscow; MoscowI. O. Chikileva
Research Institute of Experimental Therapy and Diagnostics of Tumor, N.N. Blokhin National Medical Research Center of Oncology
Email: irinatchikileva@mail.ru
ORCID iD: 0000-0003-0769-1695
SPIN-code: 3649-7321
PhD (Biology), Senior Researcher, Laboratory of Cellular Immunity
Russian Federation, MoscowM. V. Kiselevskiy
Research Institute of Experimental Therapy and Diagnostics of Tumor, N.N. Blokhin National Medical Research Center of Oncology
Email: kisele@inbox.ru
ORCID iD: 0000-0002-0132-167X
SPIN-code: 8687-2387
DSc (Medicine), Professor, Head of the Laboratory of Cellular Immunity
Russian Federation, MoscowReferences
- Гельм Ю.В., Пасова И.А., Гривцова Л.Ю., Константинова Т.В., Михайловский Н.В., Рыбачук В.А., Абакушина Е.В., Иванов С.А., Каприн А.Д. Опыт культивирования NK-клеток человека с фидерными клетками in vitro // Медицинская иммунология. 2022. Т. 24, № 3. С. 481–490. [Gelm Yu.V., Pasova I.A., Grivtsova L.Yu., Konstantinova T.V., Mikhaylovsky N.V., Rybachuk V.A., Abakushina E.V., Ivanov S.A., Kaprin A.D. In vitro experience of human natural killer cell culture with feeder cells. Meditsinskaya immunologiya = Medical Immunology (Russia), 2022, vol. 24, no. 3, pp. 481–490. (In Russ.)] doi: 10.15789/1563-0625-IVE-2481
- Bae D.S., Lee J.K. Development of NK cell expansion methods using feeder cells from human myelogenous leukemia cell line. Blood Res., 2014, vol. 49, no. 3, pp. 154–161. doi: 10.5045/br.2014.49.3.154
- Bihl F., Germain C., Luci C., Braud V.M. Mechanisms of NK cell activation: CD4(+) T cells enter the scene. Cell. Mol. Life Sci., 2011, vol. 68, no. 21, pp. 3457–3467. doi: 10.1007/s00018-011-0796-1
- Chohan K.L., Siegler E.L., Kenderian S.S. CAR-T cell therapy: the efficacy and toxicity balance. Curr. Hematol. Malig. Rep., 2023, vol. 18, no. 2, pp. 9–18. doi: 10.1007/s11899-023-00687-7
- Choi G., Shin G., Bae S. Price and prejudice? the value of chimeric antigen receptor (CAR) T-cell therapy. Int. J. Environ. Res. Public Health, 2022, vol. 19, no. 19: e12366. doi: 10.3390/ijerph191912366
- Exley M.A., Lynch L., Varghese B., Nowak M., Alatrakchi N., Balk S.P. Developing understanding of the roles of CD1d-restricted T cell subsets in cancer: reversing tumor-induced defects. Clin. Immunol., 2011, vol. 140, no. 2, pp. 184–195. doi: 10.1016/j.clim.2011.04.017
- Gao Y., Bergman I. Anti-tumor memory CD4 and CD8 T-cells quantified by bulk T-cell receptor (TCR) clonal analysis. Front. Immunol., 2023, vol. 14: e1137054. doi: 10.3389/fimmu.2023.1137054
- Gómez García L.M., Escudero A., Mestre C., Fuster Soler J.L., Martínez A.P., Vagace Valero J.M. Phase 2 clinical trial of infusing haploidentical K562-mb15-41BBL-activated and expanded natural killer cells as consolidation therapy for pediatric acute myeloblastic leukemia. Clin. Lymphoma Myeloma Leuk., 2021, vol. 21, no. 5, pp. 328–337. doi: 10.1016/j.clml.2021.01.013
- Gong Y., Klein Wolterink R.G.J., Wang J. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J. Hematol. Oncol., 2021, vol. 14: e73. doi: 10.1186/s13045-021-01083-5
- Gurney M., Kundu S., Pandey S., O’Dwyer M. Feeder cells at the interface of natural killer cell activation, expansion and gene editing. Front. Immunol., 2022, vol. 13: e802906. doi: 10.3389/fimmu.2022.802906
- Hasan A.N., Selvakumar A., Shabrova E., Liu X.R., Afridi F., Heller G., Riviere I., Sadelain M., Dupont B., O’Reilly R.J. Soluble and membrane-bound interleukin-15 Rα/IL-15 complexes mediate proliferation of high-avidity central memory CD8+ T cells for adoptive immunotherapy of cancer and infections. Clin. Exp. Immunol., 2016, vol. 186, no. 2, pp. 249–265. doi: 10.1111/cei.12816
- He X., He Q., Yu W., Huang J., Yang M., Chen W., Han W. Optimized protocol for high-titer lentivirus production and transduction of primary fibroblasts. J. Basic Microbiol., 2021, vol. 61, no. 5, pp. 430–442. doi: 10.1002/jobm.202100008
- Liu Y., Liu Z., Yang Y., Cui J., Sun J., Liu Y. The prognostic and biology of tumour-infiltrating lymphocytes in the immunotherapy of cancer. Br. J. Cancer, 2023, vol. 129, no. 7, pp. 1041–1049. doi: 10.1038/s41416-023-02321-y
- Lowe D.B., Shearer M.H., Jumper C.A., Bright R.K., Kennedy R.C. Tumor immunity against a simian virus 40 oncoprotein requires CD8+ T lymphocytes in the effector immune phase. J. Virol., 2010, vol. 84, no. 2, pp. 883–893. doi: 10.1128/JVI.01512-09
- Lowry L.E., Zehring W.A. Potentiation of natural killer cells for cancer immunotherapy: a review of literature. Front. Immunol., 2017, vol. 8: e1061. doi: 10.3389/fimmu.2017.01061
- Lu H., Zhao X., Li Z., Hu Y., Wang H. From CAR-T cells to CAR-NK cells: a developing immunotherapy method for hematological malignancies. Front. Oncol., 2021, vol. 11: e720501. doi: 10.3389/fonc.2021.720501
- Malm M., Saghaleyni R., Lundqvist M. Evolution from adherent to suspension: systems biology of HEK293 cell line development. Sci. Rep., 2020, vol. 10: e18996. doi: 10.1038/s41598-020-76137-8
- Mazinani M., Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark. Res., 2023, vol. 11: e49. doi: 10.1186/s40364-023-00482-9
- Muñoz Builes M., Vela Cuenca M., Fuster Soler J.L., Astigarraga I., Pascual Martínez A., Vagace Valero J.M. Study protocol for a phase II, multicentre, prospective, non-randomised clinical trial to assess the safety and efficacy of infusing allogeneic activated and expanded natural killer cells as consolidation therapy for paediatric acute myeloblastic leukaemia. BMJ Open, 2020, vol. 10, no. 1: e029642. doi: 10.1136/bmjopen-2019-029642
- Ojo E.O., Sharma A.A., Liu R., Moreton S., Checkley-Luttge M.A., Gupta K. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci. Rep., 2019, vol. 9: e14916. doi: 10.1038/s41598-019-51287-6
- Palen K., Zurko J., Johnson B.D., Hari P., Shah N.N. Manufacturing chimeric antigen receptor T cells from cryopreserved peripheral blood cells: time for a collect-and-freeze model? Cytotherapy, 2021, vol. 23, no. 11, pp. 985–990. doi: 10.1016/j.jcyt.2021.07.015
- Pampusch M.S., Haran K.P., Hart G.T., Rakasz E.G., Rendahl A.K., Berger E.A., Connick E., Skinner P.J. Rapid transduction and expansion of transduced T cells with maintenance of central memory populations. Mol. Ther. Methods Clin. Dev., 2019, vol. 16, pp. 1–10. doi: 10.1016/j.omtm.2019.09.007
- Phan M.T., Kim J., Koh S.K., Lim Y., Yu H., Lee M. Selective expansion of NKG2C+ adaptive NK cells using K562 cells expressing HLA-E. Int. J. Mol. Sci., 2022, vol. 23, no. 16: e9426. doi: 10.3390/ijms23169426
- Reus J.B., Trivino-Soto G.S., Wu L.I., Kokott K., Lim E.S. SV40 large T antigen is not responsible for the loss of STING in 293T cells but can inhibit cGAS-STING interferon induction. Viruses, 2020, vol. 12, no. 2: e137. doi: 10.3390/v12020137
- Rölle A., Pollmann J., Ewen E., Le V.T.K., Halenius A., Hengel H. IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J. Clin. Invest., 2014, vol. 124, no. 12, pp. 5305–5316. doi: 10.1172/JCI77440
- Scarrott J.M., Johari Y.B., Pohle T.H., Liu P., Mayer A., James D.C. Increased recombinant adeno-associated virus production by HEK293 cells using small molecule chemical additives. Biotechnol. J., 2023, vol. 18, no. 3: e2200450. doi: 10.1002/biot.202200450
- Schietinger A., Philip M., Krisnawan V.E., Chiu E.Y., Delrow J.J., Basom R.S., Lauer P., Brockstedt D.G., Knoblaugh S.E., Hämmerling G.J., Schell T.D., Garbi N., Greenberg P.D. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity, 2016, vol. 45, no. 2, pp. 389–401. doi: 10.1016/j.immuni.2016.07.011
- Schmid H., Schneidawind C., Jahnke S., Kettemann F., Secker K.-A., Duerr-Stoerzer S., Keppeler H., Kanz L., Savage P.B., Schneidawind D. Culture-expanded human invariant natural killer T cells suppress T-cell alloreactivity and eradicate leukemia. Front. Immunol., 2018, vol. 9: e1817. doi: 10.3389/fimmu.2018.01817
- Shah N., Li L., McCarty J., Kaur I., Yvon E., Shaim H. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br. J. Haematol., 2017, vol. 177, no. 3, pp. 457–466. doi: 10.1111/bjh.14570
- Tian G., Barragán G.A., Yu H., Martinez-Amador C., Adaikkalavan A., Rios X., Guo L., Drabek J.M., Pardias O., Xu X., Montalbano A., Zhang C., Li Y., Courtney A.N., Di Pierro E.J., Metelitsa L.S. PRDM1 is a key regulator of the natural killer T-cell central memory program and effector function. Cancer Immunol Res., 2025, vol. 13, no. 1, pp. 1–12. doi: 10.1158/2326-6066.CIR-24-0259
- Wang C., Li N., Li Y., Hou S., Zhang W., Meng Z., Wang S., Jia Q., Tan J., Wang R., Zhang R. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J. Nanobiotechnology, 2022, vol. 20, no. 1: 247. doi: 10.1186/s12951-022-01462-1
- Wasylishen A.R., Lozano G. Attenuating the p53 pathway in human cancers: many means to the same end. Cold Spring Harb. Perspect. Med., 2016, vol. 6, no. 8: e026211. doi: 10.1101/cshperspect.a026211
Supplementary files

