CAR-NK therapy: NK cell expansion exposed to HEK 293T cell line

Cover Page

Cite item

Full Text

Abstract

While creating chimeric antigen receptor (CAR) NK cells, it is necessary to conduct a stage of these immune cell enrichment. Feeder cells are most often used in methods for the effective NK cell expansion. The human embryonic kidney cell line containing the SV40 T-antigen (HEK 293T) is most often used for research purposes in various areas, since it is easily subjected to genetic modifications. This property indicates the potential for modifying HEK 293T cells to express tumor antigens or proinflammatory cytokines, which can be used to activate and enrich NK cells. In this work, we assessed the effect of unmodified HEK 293T cell culture on cytotoxicity and expression of NK and NKT cell activation markers in long-term cultivation in the presence of non-irradiated autologous feeder cells. The study used peripheral blood mononuclear cells collected from healthy volunteer donors. Proliferation was stimulated using antibodies against CD3 and CD28 receptors or mitomycin C-treated HEK 293T cell culture. Cell proliferation was assessed by direct cell counting added with trypan blue dye. Cytotoxicity was determined on HG3, T47D-HER2+, K562 target cultures. Flow cytometry with labeled monoclonal antibodies was used to analyze the expression of surface receptors. Four different methods for lymphocyte activation using HEK 293T were proposed. We found that when using the HEK 293T cell line, an increased percentage of CD3CD56+ cells in the population was observed in all activation modes, as well as increased expression of NK cell activation markers — NKp30 and NKG2D, in addition, the proportion of CD16+ and CD3+CD4+ lymphocytes increased relative to activation with monoclonal antibodies alone. Of the proposed options for coincubation of lymphocytes with HEK 293T feeder cells, the most effective NK cells expansion was described for the protocol involving the use of the HEK 293T cell line once before the onset of incubation without proliferation additionally stimulated with monoclonal antibodies. This approach resulted in higher proportion of CD56+ lymphocytes reaching to 60% as early as on day 4 of cultivation. Thus, HEK 293T cells stimulate NK cells division, therefore, they can be used as feeder cells in a CAR NK cell product development.

About the authors

Polina O. Fedorova

Sechenov First Moscow State Medical University; I. Mechnikov Research Institute of Vaccines and Sera; Research Institute of Experimental Therapy and Diagnostics of Tumor, N.N. Blokhin National Medical Research Center of Oncology

Author for correspondence.
Email: ppolite@mail.ru
ORCID iD: 0000-0001-7478-8783

Assistant Professor, Department of Microbiology, Virology and Immunology, Junior Researcher, Laboratory of Applied Virology, Research Laboratory Assistant, Laboratory of Cellular Immunity

Russian Federation, Moscow; Moscow; Moscow

I. O. Chikileva

Research Institute of Experimental Therapy and Diagnostics of Tumor, N.N. Blokhin National Medical Research Center of Oncology

Email: irinatchikileva@mail.ru
ORCID iD: 0000-0003-0769-1695
SPIN-code: 3649-7321

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunity

Russian Federation, Moscow

M. V. Kiselevskiy

Research Institute of Experimental Therapy and Diagnostics of Tumor, N.N. Blokhin National Medical Research Center of Oncology

Email: kisele@inbox.ru
ORCID iD: 0000-0002-0132-167X
SPIN-code: 8687-2387

DSc (Medicine), Professor, Head of the Laboratory of Cellular Immunity

Russian Federation, Moscow

References

  1. Гельм Ю.В., Пасова И.А., Гривцова Л.Ю., Константинова Т.В., Михайловский Н.В., Рыбачук В.А., Абакушина Е.В., Иванов С.А., Каприн А.Д. Опыт культивирования NK-клеток человека с фидерными клетками in vitro // Медицинская иммунология. 2022. Т. 24, № 3. С. 481–490. [Gelm Yu.V., Pasova I.A., Grivtsova L.Yu., Konstantinova T.V., Mikhaylovsky N.V., Rybachuk V.A., Abakushina E.V., Ivanov S.A., Kaprin A.D. In vitro experience of human natural killer cell culture with feeder cells. Meditsinskaya immunologiya = Medical Immunology (Russia), 2022, vol. 24, no. 3, pp. 481–490. (In Russ.)] doi: 10.15789/1563-0625-IVE-2481
  2. Bae D.S., Lee J.K. Development of NK cell expansion methods using feeder cells from human myelogenous leukemia cell line. Blood Res., 2014, vol. 49, no. 3, pp. 154–161. doi: 10.5045/br.2014.49.3.154
  3. Bihl F., Germain C., Luci C., Braud V.M. Mechanisms of NK cell activation: CD4(+) T cells enter the scene. Cell. Mol. Life Sci., 2011, vol. 68, no. 21, pp. 3457–3467. doi: 10.1007/s00018-011-0796-1
  4. Chohan K.L., Siegler E.L., Kenderian S.S. CAR-T cell therapy: the efficacy and toxicity balance. Curr. Hematol. Malig. Rep., 2023, vol. 18, no. 2, pp. 9–18. doi: 10.1007/s11899-023-00687-7
  5. Choi G., Shin G., Bae S. Price and prejudice? the value of chimeric antigen receptor (CAR) T-cell therapy. Int. J. Environ. Res. Public Health, 2022, vol. 19, no. 19: e12366. doi: 10.3390/ijerph191912366
  6. Exley M.A., Lynch L., Varghese B., Nowak M., Alatrakchi N., Balk S.P. Developing understanding of the roles of CD1d-restricted T cell subsets in cancer: reversing tumor-induced defects. Clin. Immunol., 2011, vol. 140, no. 2, pp. 184–195. doi: 10.1016/j.clim.2011.04.017
  7. Gao Y., Bergman I. Anti-tumor memory CD4 and CD8 T-cells quantified by bulk T-cell receptor (TCR) clonal analysis. Front. Immunol., 2023, vol. 14: e1137054. doi: 10.3389/fimmu.2023.1137054
  8. Gómez García L.M., Escudero A., Mestre C., Fuster Soler J.L., Martínez A.P., Vagace Valero J.M. Phase 2 clinical trial of infusing haploidentical K562-mb15-41BBL-activated and expanded natural killer cells as consolidation therapy for pediatric acute myeloblastic leukemia. Clin. Lymphoma Myeloma Leuk., 2021, vol. 21, no. 5, pp. 328–337. doi: 10.1016/j.clml.2021.01.013
  9. Gong Y., Klein Wolterink R.G.J., Wang J. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J. Hematol. Oncol., 2021, vol. 14: e73. doi: 10.1186/s13045-021-01083-5
  10. Gurney M., Kundu S., Pandey S., O’Dwyer M. Feeder cells at the interface of natural killer cell activation, expansion and gene editing. Front. Immunol., 2022, vol. 13: e802906. doi: 10.3389/fimmu.2022.802906
  11. Hasan A.N., Selvakumar A., Shabrova E., Liu X.R., Afridi F., Heller G., Riviere I., Sadelain M., Dupont B., O’Reilly R.J. Soluble and membrane-bound interleukin-15 Rα/IL-15 complexes mediate proliferation of high-avidity central memory CD8+ T cells for adoptive immunotherapy of cancer and infections. Clin. Exp. Immunol., 2016, vol. 186, no. 2, pp. 249–265. doi: 10.1111/cei.12816
  12. He X., He Q., Yu W., Huang J., Yang M., Chen W., Han W. Optimized protocol for high-titer lentivirus production and transduction of primary fibroblasts. J. Basic Microbiol., 2021, vol. 61, no. 5, pp. 430–442. doi: 10.1002/jobm.202100008
  13. Liu Y., Liu Z., Yang Y., Cui J., Sun J., Liu Y. The prognostic and biology of tumour-infiltrating lymphocytes in the immunotherapy of cancer. Br. J. Cancer, 2023, vol. 129, no. 7, pp. 1041–1049. doi: 10.1038/s41416-023-02321-y
  14. Lowe D.B., Shearer M.H., Jumper C.A., Bright R.K., Kennedy R.C. Tumor immunity against a simian virus 40 oncoprotein requires CD8+ T lymphocytes in the effector immune phase. J. Virol., 2010, vol. 84, no. 2, pp. 883–893. doi: 10.1128/JVI.01512-09
  15. Lowry L.E., Zehring W.A. Potentiation of natural killer cells for cancer immunotherapy: a review of literature. Front. Immunol., 2017, vol. 8: e1061. doi: 10.3389/fimmu.2017.01061
  16. Lu H., Zhao X., Li Z., Hu Y., Wang H. From CAR-T cells to CAR-NK cells: a developing immunotherapy method for hematological malignancies. Front. Oncol., 2021, vol. 11: e720501. doi: 10.3389/fonc.2021.720501
  17. Malm M., Saghaleyni R., Lundqvist M. Evolution from adherent to suspension: systems biology of HEK293 cell line development. Sci. Rep., 2020, vol. 10: e18996. doi: 10.1038/s41598-020-76137-8
  18. Mazinani M., Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark. Res., 2023, vol. 11: e49. doi: 10.1186/s40364-023-00482-9
  19. Muñoz Builes M., Vela Cuenca M., Fuster Soler J.L., Astigarraga I., Pascual Martínez A., Vagace Valero J.M. Study protocol for a phase II, multicentre, prospective, non-randomised clinical trial to assess the safety and efficacy of infusing allogeneic activated and expanded natural killer cells as consolidation therapy for paediatric acute myeloblastic leukaemia. BMJ Open, 2020, vol. 10, no. 1: e029642. doi: 10.1136/bmjopen-2019-029642
  20. Ojo E.O., Sharma A.A., Liu R., Moreton S., Checkley-Luttge M.A., Gupta K. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci. Rep., 2019, vol. 9: e14916. doi: 10.1038/s41598-019-51287-6
  21. Palen K., Zurko J., Johnson B.D., Hari P., Shah N.N. Manufacturing chimeric antigen receptor T cells from cryopreserved peripheral blood cells: time for a collect-and-freeze model? Cytotherapy, 2021, vol. 23, no. 11, pp. 985–990. doi: 10.1016/j.jcyt.2021.07.015
  22. Pampusch M.S., Haran K.P., Hart G.T., Rakasz E.G., Rendahl A.K., Berger E.A., Connick E., Skinner P.J. Rapid transduction and expansion of transduced T cells with maintenance of central memory populations. Mol. Ther. Methods Clin. Dev., 2019, vol. 16, pp. 1–10. doi: 10.1016/j.omtm.2019.09.007
  23. Phan M.T., Kim J., Koh S.K., Lim Y., Yu H., Lee M. Selective expansion of NKG2C+ adaptive NK cells using K562 cells expressing HLA-E. Int. J. Mol. Sci., 2022, vol. 23, no. 16: e9426. doi: 10.3390/ijms23169426
  24. Reus J.B., Trivino-Soto G.S., Wu L.I., Kokott K., Lim E.S. SV40 large T antigen is not responsible for the loss of STING in 293T cells but can inhibit cGAS-STING interferon induction. Viruses, 2020, vol. 12, no. 2: e137. doi: 10.3390/v12020137
  25. Rölle A., Pollmann J., Ewen E., Le V.T.K., Halenius A., Hengel H. IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J. Clin. Invest., 2014, vol. 124, no. 12, pp. 5305–5316. doi: 10.1172/JCI77440
  26. Scarrott J.M., Johari Y.B., Pohle T.H., Liu P., Mayer A., James D.C. Increased recombinant adeno-associated virus production by HEK293 cells using small molecule chemical additives. Biotechnol. J., 2023, vol. 18, no. 3: e2200450. doi: 10.1002/biot.202200450
  27. Schietinger A., Philip M., Krisnawan V.E., Chiu E.Y., Delrow J.J., Basom R.S., Lauer P., Brockstedt D.G., Knoblaugh S.E., Hämmerling G.J., Schell T.D., Garbi N., Greenberg P.D. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity, 2016, vol. 45, no. 2, pp. 389–401. doi: 10.1016/j.immuni.2016.07.011
  28. Schmid H., Schneidawind C., Jahnke S., Kettemann F., Secker K.-A., Duerr-Stoerzer S., Keppeler H., Kanz L., Savage P.B., Schneidawind D. Culture-expanded human invariant natural killer T cells suppress T-cell alloreactivity and eradicate leukemia. Front. Immunol., 2018, vol. 9: e1817. doi: 10.3389/fimmu.2018.01817
  29. Shah N., Li L., McCarty J., Kaur I., Yvon E., Shaim H. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br. J. Haematol., 2017, vol. 177, no. 3, pp. 457–466. doi: 10.1111/bjh.14570
  30. Tian G., Barragán G.A., Yu H., Martinez-Amador C., Adaikkalavan A., Rios X., Guo L., Drabek J.M., Pardias O., Xu X., Montalbano A., Zhang C., Li Y., Courtney A.N., Di Pierro E.J., Metelitsa L.S. PRDM1 is a key regulator of the natural killer T-cell central memory program and effector function. Cancer Immunol Res., 2025, vol. 13, no. 1, pp. 1–12. doi: 10.1158/2326-6066.CIR-24-0259
  31. Wang C., Li N., Li Y., Hou S., Zhang W., Meng Z., Wang S., Jia Q., Tan J., Wang R., Zhang R. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J. Nanobiotechnology, 2022, vol. 20, no. 1: 247. doi: 10.1186/s12951-022-01462-1
  32. Wasylishen A.R., Lozano G. Attenuating the p53 pathway in human cancers: many means to the same end. Cold Spring Harb. Perspect. Med., 2016, vol. 6, no. 8: e026211. doi: 10.1101/cshperspect.a026211

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Fedorova P.O., Chikileva I.O., Kiselevskiy M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).