IL-27 as effector molecule in viral infections and immunity

Cover Page

Cite item

Full Text

Abstract

Interleukin-27 (IL-27) is a cytokine with multifaceted effects on immune responses. It is composed of two subunits: IL-27p28 и EBI3. The receptor complex for IL-27 consists of the heterodimeric IL-27R, which includes IL-27Rα and gp130. This receptor is expressed on various cell types, including T lymphocytes, B cells, NK cells, dendritic cells, macrophages, as well as endothelial and epithelial cells. Initially, IL-27 was primarily associated with Th1-mediated immune responses, but it is now recognized to also exhibit anti-inflammatory functions. IL-27 is mainly produced by antigen-presenting cells, such as dendritic cells and macrophages, but can also be secreted by adaptive immune cells. Its production is linked to infectious and autoimmune processes. The key effects of this cytokine include: direct modulation of effector CD4+ and CD8+ T-cell functions, stimulation of anti-inflammatory IL-10 production, recruitment of specialized regulatory T cells (Treg). In vitro, IL-27 promotes the proliferation of naïve CD4+ T lymphocytes through simultaneous binding to CD3 and the T-cell receptor. Additionally, this cytokine enhances CD4+ T-cell mobilization by increasing the secretion of chemokines and adhesion molecules. At the same time, IL-27 exerts anti-inflammatory effects, particularly by suppressing Th17-mediated immune responses. Despite its dual functionality, IL-27 is frequently associated with the progression of infectious processes in in vitro experiments and murine models. It serves as a crucial modulator of immune responses, capable of both activating protective mechanisms and restraining excessive inflammation. This study, based on literature data and the personal findings, highlights the diverse roles of IL-27 in viral infections such as influenza, HIV, COVID-19, and hepatitis B and C. The potential of IL-27 as a laboratory marker for clinical progression of viral infections remains to be fully elucidated. Its levels in peripheral blood are influenced by multiple factors, including the presence or absence of comorbidities. Thus, IL-27 is a key cytokine involved in the immunopathogenesis of viral infections. Investigating its diagnostic and differential significance in the aforementioned conditions may become a relevant scientific challenge.

About the authors

Zoya R. Korobova

St. Petersburg Pasteur Institute; Pavlov First St. Petersburg State Medical University

Author for correspondence.
Email: zoia-korobova@yandex.ru
ORCID iD: 0000-0003-0535-5014

PhD (Medicine), Junior Researcher, Laboratory of Molecular Immunology, Assistant Professor, Department of Immunology

Russian Federation, St. Petersburg; St. Petersburg

N. A. Arsentieva

St. Petersburg Pasteur Institute; Pavlov First St. Petersburg State Medical University

Email: arsentieva_n.a@bk.ru
ORCID iD: 0000-0003-2490-308X

PhD (Biology), Senior Researcher, Laboratory of Molecular Immunology, Associate Professor of the Department of Immunology

Russian Federation, St. Petersburg; St. Petersburg

A. A. Totolian

St. Petersburg Pasteur Institute; Pavlov First St. Petersburg State Medical University

Email: zoia-korobova@yandex.ru

RAS Full Member, DSc (Medicine), Professor, Director, Head of the Department of Immunology

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Арсентьева Н.А., Бацунов О.К., Любимова Н.Е., Басина В.В., Эсауленко Е.В., Тотолян А.А. Профиль цитокинов плазмы крови больных хроническим вирусным гепатитом С // Медицинская иммунология. 2024. Т. 26, № 6. С. 1235–1248. [Arsentieva N.A., Batsunov O.K., Lyubimova N.E., Basina V.V., Esaulenko E.V., Totolian A.A. Cytokine profiling of plasma in patients with viral hepatitis C. Meditsinskaya immunologiya = Medical Immunology (Russia), 2024, vol. 26, no. 6, pp. 1235–1248. (In Russ.)] doi: 10.15789/1563-0625-CPO-3117
  2. Арсентьева Н.А., Любимова Н.Е., Бацунов О.К., Коробова З.Р., Станевич О.В., Лебедева А.А., Воробьев Е.А., Воробьева С.В., Куликов А.Н., Лиознов Д.А., Шарапова М.А., Певцов Д.Э., Тотолян А.А. Цитокины в плазме крови больных COVID-19 в острой фазе заболевания и фазе полного выздоровления // Медицинская иммунология. 2021. Т. 23, № 2. С. 311–326. [Arsentieva N.A., Liubimova N.E., Batsunov O.K., Korobova Z.R., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Lioznov D.A., Sharapova M.A., Pevtcov D.E., Totolian A.A. Plasma cytokines in patients with COVID-19 during acute phase of the disease and following complete recovery. Meditsinskaya immunologiya = Medical Immunology (Russia), 2021, vol. 23, no. 2, pp. 311–326. (In Russ.)] doi: 10.15789/1563-0625-PCI-2312
  3. Бацунов О.К., Арсентьева Н.А., Любимова Н.Е., Зыонг Д.Ч., Басина В.В., Эсауленко Е.В., Тотолян А.А. Оценка уровня цитокинов в плазме крови больных хроническим вирусным гепатитом В при различных стадиях фиброза печени // Инфекция и иммунитет. 2025. Т. 15, № 4. C. 703–718. [Batsunov O.K., Arsentieva N.A., Liubimova N.E., Duong D.T., Basina V.V., Esaulenko E.V., Totolian A.A. Blood plasma сytokine levels in patients with chronic viral hepatitis B stage-dependent liver fibrosis. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2025, vol. 15, no. 4, pp. 703–718. (In Russ.)] doi: 10.15789/2220-7619-BPC-17950
  4. Arsentieva N.A., Lyubimova N.E., Batsunov O.K., Korobova Z.R., Stanevich O.V., Lebedeva A.A., Dovgan A.P., Petrova N.V., Fomina D.S., Zinovyeva A.O., Lagutkina A.A., Kudryavtsev I.V., Totolian A.A. Plasma cytokines in acute and convalescent COVID-19 patients. Medical Immunology (Russia), 2021, vol. 23, no. 2, pp. 311–326. doi: 10.15789/1563-0625-PCI-2312
  5. Amsden H., Kourko O., Roth M., Gee K. Antiviral activities of interleukin-27: a partner for interferons? Front. Immunol., 2022, vol. 13: 902853. doi: 10.3389/fimmu.2022.902853
  6. Andres-Martin F., James C., Catalfamo M. IL-27 expression regulation and its effects on adaptive immunity against viruses. Front. Immunol., 2024, vol. 15: 1395921. doi: 10.3389/fimmu.2024.1395921
  7. Clement M., Marsden M., Stacey M.A., Abdul-Careem M.F., Foster P.S., Harcourt B.H., MacDonald A.S., Wilson M.S. Cytomegalovirus-specific IL-10-producing CD4+ T cells are governed by type-I IFN-induced IL-27 and promote virus persistence. PLoS Pathog., 2016, vol. 12, no. 11: e1006050. doi: 10.1371/journal.ppat.1006050
  8. Devergne O., Hummel M., Koeppen H., Le Gall I., Greenfield E.A., Punnonen J., Bouwelen F.V., Baum P., Capon D.J., Aruffo A., Biron C.A., Wysocka M., Trinchieri G., Kieff E. A novel interleukin-12 p40-related protein induced by latent Epstein–Barr virus infection in B lymphocytes. J. Virol., 1996, vol. 70, no. 2, pp. 1143–1153. doi: 10.1128/jvi.70.2.1143-1153.1996
  9. Fan J., Zhang Y.C., Zheng D.F., Zhao Y., Tan W.J., Yin D.D., Lu C., Li C.X., Shen H.Q., Liu Y.P., Cai Z.J., Jiang Y. IL-27 is elevated in sepsis with acute hepatic injury and promotes hepatic damage and inflammation in the CLP model. Cytokine, 2020, vol. 127: 154936. doi: 10.1016/j.cyto.2019.154936
  10. Forrester M.A., Robertson L., Bayoumi N., Ball S., Sallenave J.M. Human interleukin-27: wide individual variation in plasma levels and complex inter-relationships with interleukin-17A. Clin. Exp. Immunol., 2014, vol. 178, no. 2, pp. 373–383. doi: 10.1111/cei.12408
  11. Frank A.C., Zhang X., Katsounas A., Nelson M., Piatak M., Lifson J.D., Lane H.C., Imamichi T. Interleukin-27, an anti-HIV-1 cytokine, inhibits replication of hepatitis C virus. J. Interferon Cytokine Res., 2010, vol. 30, no. 6, pp. 427–431. doi: 10.1089/jir.2009.0093
  12. Hamdy H., Elhamammy R.H., Abdelmageed M., Wahid A. Impact of single nucleotide polymorphism of IL-27P28 rs153109 and IFITM3 rs12252 on susceptibility and severity of COVID-19 in Egyptian patients. Virol. J., 2025, vol. 22, no. 1: 66. doi: 10.1186/s12985-025-02668-z
  13. Hanna W.J., Berrens Z., Langner T., Eltzschig H.K., Wynn J.L. Interleukin-27: a novel biomarker in predicting bacterial infection among the critically ill. Crit. Care, 2015, vol. 19: 378. doi: 10.1186/s13054-015-1095-2
  14. Hosokawa Y., Hosokawa I., Ozaki K., Matsuo T. IL-27 modulates chemokine production in TNF-α-stimulated human oral epithelial cells. Cell. Physiol. Biochem., 2017, vol. 43, no. 3, pp. 1198–1206. doi: 10.1159/000481760
  15. Jouhault Q., Cherqaoui B., Jobart-Malfait A., Naqvi A.R., Le Goff B., Pène J., Marion E., Bourgeois C., Müller S., Tailleux L., Fallahi-Sichani M. Interleukin 27 is a novel cytokine with anti-inflammatory effects against spondyloarthritis through the suppression of Th17 responses. Front. Immunol., 2023, vol. 13: 1072420. doi: 10.3389/fimmu.2022.1072420
  16. Klingler J., Lambert G.S., Bandres J.C., López R., Law T., Hernández A., Cárdenas O., Ward S., López-Varela G., Hernández M., Patel R. Immune profiles to distinguish hospitalized versus ambulatory COVID-19 cases in older patients. iScience, 2022, vol. 25: 105608. doi: 10.1016/j.isci.2022.105608
  17. Koltsova E.K., Kim G., Lloyd K.M. Interleukin-27 receptor limits atherosclerosis in Ldlr–/– mice. Circ. Res., 2012, vol. 111, no. 10, pp. 1274–1285. doi: 10.1161/CIRCRESAHA.112.277525
  18. Korobova Z.R., Arsentieva N.A., Lyubimova N.E., Sergeev N.G., Sandu K.R., Totolian A.A. Cytokine profiling in SARS-CoV-2 genetic variants. Int. J. Mol. Sci., 2022, vol. 23: 14146. doi: 10.3390/ijms232214146
  19. Korobova Z.R., Arsentieva N.A., Santoni A., Totolian A.A. Role of IL-27 in COVID-19: a thin line between protection and disease promotion. Int. J. Mol. Sci., 2024, vol. 25, no. 14: 7953. doi: 10.3390/ijms25147953
  20. Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Ivanov A.A., Petrov P.P., Lebedev M.M. Heterogenous CD8+ T cell maturation and ‘polarization’ in acute and convalescent COVID-19 patients. Viruses, 2022, vol. 14, no. 9: 1906. doi: 10.3390/v14091906
  21. Kumar P., Rajasekaran K., Nanbakhsh A., Patil P., Rivera E., Johnson E., Kumar U. IL-27 promotes NK cell effector functions via MAF-NRF2 pathway during influenza infection. Sci. Rep., 2019, vol. 9, no. 1: 4984. doi: 10.1038/s41598-019-41478-6
  22. Liu F.D., Kenngott E.E., Schröter M.F., Röhn T., Zoernig I., Arnold S.B., Beutner F., Stüve P. Timed action of IL-27 protects from immunopathology while preserving defense in influenza. PLoS Pathog., 2014, vol. 10, no. 5: e1004110. doi: 10.1371/journal.ppat.1004110
  23. Liu L., Cao Z., Chen J., Wang Y., Zhang Y., Li Y., Song Y. Influenza A virus induces interleukin-27 through cyclooxygenase-2 and protein kinase A signaling. J. Biol. Chem., 2012, vol. 287, no. 15, pp. 11899–11910. doi: 10.1074/jbc.M111.308064
  24. Martin E., Winter S., Garcin C., Brodeur H., Simonetta F., Miguel L., Reinhardt R., Hafler D.A., York M. Role of IL-27 in Epstein–Barr virus infection revealed by IL-27RA deficiency. Nature, 2024, vol. 628, pp. 620–629. doi: 10.1038/s41586-024-07213-6
  25. Mei Y., Lv Z., Xiong L., Cheng X., Ma J., Sun H., Jiang J. The dual role of IL-27 in CD4+ T cells. Mol. Immunol., 2021, vol. 138, pp. 172–180. doi: 10.1016/j.molimm.2021.08.00
  26. Naya A., Bouklouze A., Zaid Y., Naciri M., Bencheikh M., Lahmar A., Ouimeur N. Explanatory predictive model for COVID-19 severity risk employing machine learning, Shapley addition, and LIME. Sci. Rep., 2023, vol. 13: 1–19. doi: 10.1038/s41598-023-36489-3
  27. Petes C., Odoardi N., Plater S.M., Wright L., Polley S., Wilford P., Baylis M., Britton W., Greenwood N. IL-27 amplifies cytokine responses to Gram-negative bacterial products and Salmonella typhimurium infection. Sci. Rep., 2018, vol. 8: 13704. doi: 10.1038/s41598-018-32007-y
  28. Pflanz S., Timans J.C., Cheung J., Rosales R., Kanzler H., Gilbert J., Hibbert L., Churakova T., Travis M., Vaisberg E., Blumenschein W., Mattson J.D., Wagner J., To W., Zurawski S., McClure R., de Waal Malefyt R., Rennick D., Wagner R., Gorman D.M., Bazan J.F., Kastelein R.A. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity, 2002, vol. 16, no. 6, pp. 779–790. doi: 10.1016/S1074-7613(02)00324-2
  29. Poudyal D., Yang J., Chen Q., Li L., Zhou X., Xu G., Chen J., Zhao Y. IL-27 posttranslationally regulates Y-box binding protein-1 to inhibit HIV-1 replication in human CD4+ T cells. AIDS, 2019, vol. 33, no. 12, pp. 1819–1830. doi: 10.1097/QAD.0000000000002288
  30. Ramamurthy N., Boninsegna S., Adams R., Khatri M., Liotta L., Gilmour J., Klenerman P., Towers G., Borrow P. Impact of IL-27 on hepatocyte antiviral gene expression and function. Wellcome Open Res., 2016, vol. 1: 17. doi: 10.12688/wellcomeopenres.9917.1
  31. Robinson K.M., Lee B., Scheller E.V., Mandalapu S., Enelow R.I., Denney L., Phillips N., Osterholzer J.J., Curtis J.L., Toews G.B., Stowe J., Paine R., Moore B.B. The role of IL-27 in susceptibility to post-influenza Staphylococcus aureus pneumonia. Respir. Res., 2015, vol. 16: 10. doi: 10.1186/s12931-015-0168-8
  32. Seman B.G., Vance J.K., Rawson T.W., Kastenmüller W., Gerner M.Y., Sedivy J., Jaye A.C., Cowley L.A., Hayes J.E. Elevated levels of interleukin-27 in early life compromise protective immunity in a mouse model of Gram-negative neonatal sepsis. Infect. Immun., 2020, vol. 88, no. 3: e00828-19. doi: 10.1128/IAI.00828-19
  33. Qian S., Zhang X., Zheng X., Zhou Y., Li F., Wang L., Liu X., Chen Y., Xiong Z., Zhang N. Development of interleukin-27 recombinant Lactococcus lactis and its efficacy in treating psoriasis and colitis in mice. Int. J. Biol. Macromol., 2024, vol. 282: 137113. doi: 10.1016/j.ijbiomac.2024.137113
  34. Swaminathan S., Dai L., Lane H.C., Imamichi T. Evaluating the potential of IL-27 as a novel therapeutic agent in HIV-1 infection. Cytokine Growth Factor Rev., 2013, vol. 24, no. 6, pp. 571–577. doi: 10.1016/j.cytogfr.2013.07
  35. Valdés-López J.F., Urcuqui-Inchima S. Antiviral response and immunopathogenesis of interleukin 27 in COVID-19. Arch. Virol., 2023, vol. 168, pp. 1–19. doi: 10.1007/s00705-023-05772-7
  36. Wang H.L., Zhang H.Y., Zhai Z.L., Zhou X. The correlation between hepatitis B virus infection and IL-27. Biomed. Mater. Eng., 2012, vol. 22, no. 1–3, pp. 187–193. doi: 10.3233/BME-2012-0706
  37. Wang X., Liu X., Zhang Y., Huang X., Chen J., Zhao L., Chen Q. Interleukin (IL)-39 [IL-23p19/Epstein–Barr virus-induced 3 (Ebi3)] induces differentiation/expansion of neutrophils in lupus-prone mice. Clin. Exp. Immunol., 2016, vol. 186, no. 2, pp. 144–156. doi: 10.1111/cei.12840
  38. Wehrens E.J., Wong K.A., Gupta A., Sutherland A.P., Tran E., Figgett W., Loughhead S.M., La Gruta N.L., Purcell D.F. IL-27 regulates the number, function and cytotoxic program of antiviral CD4 T cells and promotes cytomegalovirus persistence. PLoS One, 2018, vol. 13, no. 7: e0201249. doi: 10.1371/journal.pone.0201249
  39. Yoshida H., Hunter C.A. The immunobiology of interleukin-27. Annu. Rev. Immunol., 2015, vol. 33, pp. 417–443. doi: 10.1146/annurev-immunol-032414-112134
  40. Zamani B., Najafizadeh M., Motedayyen H., ArefNezhad R. Predicting roles of IL-27 and IL-32 in determining the severity and outcome of COVID-19. Int. J. Immunopathol. Pharmacol., 2022, vol. 36: 03946320221145827. doi: 10.1177/03946320221145827
  41. Zhu C., Zhang R., Liu L., Xu X., Cai X., Zhu Y. Hepatitis B virus enhances interleukin-27 expression both in vivo and in vitro. Clin. Immunol., 2009, vol. 131, no. 1, pp. 92–97. doi: 10.1016/j.clim.2008.10.011

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Korobova Z.R., Arsentieva N.A., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).