Immune response to norovirus infection

Cover Page

Cite item

Full Text

Abstract

Noroviruses are non-enveloped viruses of the family Caliciviridae. The norovirus variants that infect humans are highly contagious and are a leading cause of outbreaks for nonbacterial gastroenteritis. In the etiological pattern of acute viral intestinal infections, noroviruses hold the second place after rotaviruses. In countries with widespread use of rotavirus vaccines, the incidence of rotavirus infection has declined, whereas noroviruses have become the leading cause of nonbacterial gastroenteritis. A further decline in the incidence of intestinal infections can be achieved by using a vaccine against norovirus, however work on developing this vaccine is still underway. This review provides information on the circulation of genetic norovirus variants, its antigenic epitopes from structural and non-structural proteins, specific immune response, the regulatory activity of viral proteins, and formation of individual and collective immunity against noroviruses. The presented data indicate that immunity generated by norovirus infection has a limited duration and is apparently restricted by the norovirus genotype. The narrow specificity of immunity and the high level of genetic virus variation complicate targeted vaccine development. The long-term and very active circulation of noroviruses of the gene variant GII.4 Sydney 2012 suggests that it has properties that prevent the specific immunity formation in human population. Identification of such properties may be important for developing effective vaccine. Evaluating the protective significance of the immune response to the VP2 protein and virus’s non-structural proteins is also of considerable interest. Until these questions are solved, the most obvious candidates for the norovirus vaccine are capsid proteins VP1 of the gene variant GII.4 Sydney 2012, as well as other most relevant virus variants. Currently circulating strains of the GII.17 genotype exemplify such relevant variants. It also seems likely that, if the vaccine is successfully designed, periodic modification of its antigenic composition will be required in accordance with the epidemiological situation.

About the authors

Vladimir Y. Talayev

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Russian Federal Consumer Rights Protection and Human Health Control Service

Author for correspondence.
Email: talaev@inbox.ru
ORCID iD: 0000-0003-1993-0622
SPIN-code: 5958-4703

DSc (Medicine), Professor, Head of the Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

O. N. Babaykina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Russian Federal Consumer Rights Protection and Human Health Control Service

Email: olga_babaykina@inbox.ru
ORCID iD: 0000-0003-4527-6134
SPIN-code: 9438-9974

PhD (Medicine), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

E. V. Kurkova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Russian Federal Consumer Rights Protection and Human Health Control Service

Email: el2v@mail.ru
ORCID iD: 0000-0003-1801-9693
SPIN-code: 6615-7674

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

A.-M. D. Zharova

National Research Lobachevsky State University

Email: uglich_marie@mail.ru
ORCID iD: 0009-0004-5213-1157
SPIN-code: 6710-2294

Assistant Professor, Department of General and Medical Genetics, Institute of Biology and Biomedicine

Russian Federation, Nizhny Novgorod

M. V. Svetlova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Russian Federal Consumer Rights Protection and Human Health Control Service

Email: marya.talaeva@yandex.ru
ORCID iD: 0000-0003-4097-6780
SPIN-code: 8340-7583

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

I. Y. Zaichenko

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Russian Federal Consumer Rights Protection and Human Health Control Service

Email: imm.irina@mail.ru
ORCID iD: 0000-0001-5063-3111
SPIN-code: 3522-4289
Scopus Author ID: 8547169800

PhD (Biology), Leading Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

References

  1. Епифанова Н.В., Луковникова Л.Б., Новикова Н.А., Парфенова О.В., Фомина С.Г. Эпидемические варианты норовирусов генотипа GII.4 в Нижнем Новгороде в 2006–2012 гг. // Журнал микробиологии, эпидемиологии и иммунобиологии. 2014. Т. 91, № 2. C. 64-72. [Epifanova N.V., Lukovnikova L.B., Novikova N.A., Parfenova O.V., Fomina S.G. Epidemic variants of norovirus genotype GII.4 in Nizhny Novgorod in 2006–2012. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2014, vol. 91, no. 2, pp. 64–72. (In Russ.)]
  2. Кожухова Е.А., Горбова И.В. Характеристика случаев острой диареи у взрослых больных с позитивной реакцией клинического материала на норовирус // Инфекция и иммунитет. 2019. Т. 9, № 2. С. 375–380. [Kozhukhova E.A., Gorbova I.V. Characteristics of acute diarrhea in adult patients positive for Norwalk virus. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, vol. 9, no. 2, pp. 375–380. (In Russ.)] doi: 10.15789/2220-7619-2019-2-375-380
  3. Aktepe T.E., Deerain J.M., Hyde J.L., Fritzlar S., Mead E.M., Carrera Montoya J., Hachani A., Pearson J.S., White P.A., Mackenzie J.M. Norovirus-mediated translation repression promotes macrophage cell death. PLoS Pathog., 2024, vol. 20, no. 9: e1012480. doi: 10.1371/journal.ppat.1012480
  4. Atmar R.L., Opekun A.R., Gilger M.A., Estes M.K., Crawford S.E., Neill F.H., Ramani S., Hill H., Ferreira J., Graham D.Y. Determination of the 50% human infectious dose for Norwalk virus. J. Infect. Dis., 2014, vol. 209, no. 7, pp. 1016–1022. doi: 10.1093/infdis/jit620
  5. Barclay L., Cannon J.L., Wikswo M.E., Phillips A.R., Browne H., Montmayeur A.M., Tatusov R.L., Burke R.M., Hall A.J., Vinjé J. Emerging novel GII.P16 noroviruses associated with multiple capsid genotypes. Viruses, 2019, vol. 11, no. 6: 535. doi: 10.3390/v11060535
  6. Baric R.S., Yount B., Lindesmith L., Harrington P.R., Greene S.R., Tseng F.C., Davis N., Johnston R.E., Klapper D.G., Moe C.L. Expression and self-assembly of norwalk virus capsid protein from venezuelan equine encephalitis virus replicons. J. Virol., 2002, vol. 76, no. 6, pp. 3023–3030. doi: 10.1128/jvi.76.6.3023-3030.2002
  7. Bartsch S.M., Lopman B.A., Ozawa S., Hall A.J., Lee B.Y. Global Economic Burden of Norovirus Gastroenteritis. PLoS One, 2016, vol. 11, no. 4: e0151219. doi: 10.1371/journal.pone.0151219
  8. Blacklow N.R., Cukor G., Bedigian M.K., Echeverria P., Greenberg H.B., Schreiber D.S., Trier J.S. Immune response and prevalence of antibody to Norwalk enteritis virus as determined by radioimmunoassay. J. Clin. Microbiol., 1979, vol. 10, no. 6, pp. 903–909. doi: 10.1128/jcm.10.6.903-909.1979
  9. Bok K., Abente E.J., Realpe-Quintero M., Mitra T., Sosnovtsev S.V., Kapikian A.Z., Green K.Y. Evolutionary dynamics of GII.4 noroviruses over a 34-year period. J. Virol., 2009, vol. 83, no. 22, pp. 11890–11901. doi: 10.1128/JVI.00864-09
  10. Bok K., Parra G.I., Mitra T., Abente E., Shaver C.K., Boon D., Engle R., Yu C., Kapikian A.Z., Sosnovtsev S.V., Purcell R.H., Green K.Y. Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 325–330. doi: 10.1073/pnas.1014577107
  11. Boon D., Mahar J.E., Abente E.J., Kirkwood C.D., Purcell R.H., Kapikian A.Z., Green K.Y., Bok K. Comparative evolution of GII.3 and GII.4 norovirus over a 31-year period. J. Virol., 2011, vol. 85, no. 17, pp. 8656–8666. doi: 10.1128/JVI.00472-11
  12. Bull R.A., Hansman G.S., Clancy L.E., Tanaka M.M., Rawlinson W.D., White P.A. Norovirus recombination in ORF1/ORF2 overlap. Emerg. Infect. Dis., 2005, vol. 11, no. 7, pp. 1079–1085. doi: 10.3201/eid1107.041273
  13. Centers for Disease Control and Prevention (CDC). Emergence of new norovirus strain GII.4 Sydney–United States, 2012. MMWR Morb. Mortal. Wkly Rep., 2013, vol. 62, no. 3, p. 55.
  14. Chan M.C., Lee N., Hung T.N., Kwok K., Cheung K., Tin E.K.Y., Lai R.W.M., Nelson E.A.S., Leung T.F., Chan P.K.S. Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. Nat. Commun., 2015, vol. 6: 10061. doi: 10.1038/ncomms10061
  15. Chan M.C.W., Hu Y., Chen H., Podkolzin A.T., Zaytseva E.V., Komano J., Sakon N., Poovorawan Y., Vongpunsawad S., Thanusuwannasak T., Hewitt J., Croucher D., Collins N., Vinjé J., Pang X.L., Lee B.E., de Graaf M., van Beek J., Vennema H., Koopmans M.P.G., Niendorf S., Poljsak-Prijatelj M., Steyer A., White P.A., Lun J.H., Mans J., Hung T.-N., Kwok K., Cheung K., Lee N., Chan P.K.S. Global spread of norovirus GII.17 Kawasaki 308, 2014–2016. Emerg. Infect. Dis., 2017, vol. 23, no. 8, pp. 1350–1354. doi: 10.3201/eid2308.161138
  16. Chen R., Neill J.D., Noel J.S., Hutson A.M., Glass R.I., Estes M.K., Prasad B.V. Inter- and intragenus structural variations in caliciviruses and their functional implications. J. Virol., 2004, vol. 78, no. 12, pp. 6469–6479. doi: 10.1128/JVI.78.12.6469-6479.2004
  17. Chhabra P., de Graaf M., Parra G.I., Chan M.C., Green K., Martella V., Wang Q., White P.A., Katayama K., Vennema H., Koopmans M.P.G., Vinjé J. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol., 2019, vol. 100, no. 10, pp. 1393–1406. doi: 10.1099/jgv.0.001318
  18. Chhabra P., Wong S., Niendorf S., Lederer I., Vennema H., Faber M., Nisavanh A., Jacobsen S., Williams R., Colgan A., Yandle Z., Garvey P., Al-Hello H., Ambert-Balay K., Barclay L., de Graaf M., Celma C., Breuer J., Vinjé J., Douglas A. Increased circulation of GII.17 noroviruses, six European countries and the United States, 2023 to 2024. Euro Surveill., 2024, vol. 29, no. 39: 2400625. doi: 10.2807/1560-7917.ES.2024.29.39.2400625
  19. Conley M.J., McElwee M., Azmi L., Gabrielsen M., Byron O., Goodfellow I.G., Bhella D. Calicivirus VP2 forms a portal-like assembly following receptor engagement. Nature, 2019, vol. 565, no. 7739, pp. 377–381. doi: 10.1038/s41586-018-0852-1
  20. Costantini V.P., Cooper E.M., Hardaker H.L., Lee L.E., DeBess E.E., Cieslak P.R., Hall A.J., Vinjé J. Humoral and Mucosal Immune Responses to Human Norovirus in the Elderly. J. Infect. Dis., 2020, vol. 221, no. 11, pp. 1864–1874. doi: 10.1093/infdis/jiaa021
  21. Czako R., Atmar R.L., Opekun A.R., Gilger M.A., Graham D.Y., Estes M.K. Experimental human infection with Norwalk virus elicits a surrogate neutralizing antibody response with cross-genogroup activity. Clin. Vaccine Immunol., 2015, vol. 22, no. 2, pp. 221–228. doi: 10.1128/CVI.00516-14
  22. Dang W., Xu L., Yin Y., Chen S., Wang W., Hakim M.S., Chang K.O., Peppelenbosch M.P., Pan Q. IRF-1, RIG-I and MDA5 display potent antiviral activities against norovirus coordinately induced by different types of interferons. Antiviral Res., 2018, vol. 155, pp. 48–59. doi: 10.1016/j.antiviral.2018.05.004
  23. De Graaf M., van Beek J., Vennema H., Podkolzin A.T., Hewitt J., Bucardo F., Templeton K., Mans J., Nordgren J., Reuter G., Lynch M., Rasmussen L.D., Iritani N., Chan M.C., Martella V., Ambert-Balay K., Vinjé J., White P.A., Koopmans M.P. Emergence of a novel GII.17 norovirus — End of the GII.4 era? Euro Surveill., 2015, vol. 20, no. 26: 21178. doi: 10.2807/1560-7917.ES2015.20.26.21178
  24. De Graaf M., van Beek J., Koopmans M.P. Human norovirus transmission and evolution in a changing world. Nat. Rev. Microbiol., 2016, vol. 14, no. 7, pp. 421–433. doi: 10.1038/nrmicro.2016.48
  25. Debbink K., Lindesmith L.C., Donaldson E.F., Baric R.S. Norovirus immunity and the great escape. PLoS Pathog., 2012, vol. 8, no. 10: e1002921. doi: 10.1371/journal.ppat.1002921
  26. Deng Y., He T., Li B., Yuan H., Zhang F., Wu H., Ning J., Zhang Y., Zhai A., Wu C. Linear epitopes on the capsid protein of norovirus commonly elicit high antibody response among past-infected individuals. Virol. J., 2023, vol. 20, no. 1: 115. doi: 10.1186/s12985-023-02087-y
  27. Desai R., Hembree C.D., Handel A., Matthews J.E., Dickey B.W., McDonald S., Hall A.J., Parashar U.D., Leon J.S., Lopman B. Severe outcomes are associated with genogroup 2 genotype 4 norovirus outbreaks: a systematic literature review. Clin. Infect. Dis., 2012, vol. 55, no. 2, pp. 189–193. doi: 10.1093/cid/cis372
  28. Dinu S., Oprea M., Iordache R.I., Rusu L.C., Usein C.R. Genome characterisation of norovirus GII.P17-GII.17 detected during a large gastroenteritis outbreak in Romania in 2021. Arch. Virol., 2023, vol. 168, no. 4: 116. doi: 10.1007/s00705-023-05741-6
  29. Division of Viral Diseases NCfI, Respiratory Diseases CfDC, Prevention. Updated norovirus outbreak management and disease prevention guidelines. MMWR Recomm. Rep., 2011, vol. 60, pp. 1–18.
  30. Donaldson E.F., Lindesmith L.C., Lobue A.D., Baric R.S. Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol. Rev., 2008, vol. 225, pp. 190–211. doi: 10.1111/j.1600-065X.2008.00680.x
  31. Epifanova N.V., Sashina T.A., Morozova O.V., Oparina S.V., Novikova N.A. An increase in prevalence of recombinant GII.3[P12] norovirus in sporadic acute diarrhea in children in Nizhny Novgorod, Russia, 2018–2021. Virus Genes, 2022, vol. 58, no. 5, pp. 467–472. doi: 10.1007/s11262-022-01919-3
  32. Ettayebi K., Hardy M.E. Norwalk virus nonstructural protein p48 forms a complex with the SNARE regulator VAP-A and prevents cell surface expression of vesicular stomatitis virus G protein. J. Virol., 2003, vol. 77, no. 21, pp. 11790–11797. doi: 10.1128/jvi.77.21.11790-11797.2003
  33. Fernandez-Vega V., Sosnovtsev S.V., Belliot G., King A.D., Mitra T., Gorbalenya A., Green K.Y. Norwalk virus N-terminal nonstructural protein is associated with disassembly of the Golgi complex in transfected cells. J. Virol., 2004, vol. 78, no. 9, pp. 4827–4837. doi: 10.1128/jvi.78.9.4827-4837.2004
  34. Ford-Siltz L.A., Tohma K., Kihn K., Kendra J.A., Deredge D., Wintrode P., Gao Y., Parra G.I. Characterization of cross-reactive, non-neutralizing monoclonal antibodies against a pandemic GII.4 norovirus variant. Microbiol. Spectr., 2024, vol. 12, no. 12: e0114324. doi: 10.1128/spectrum.01143-24
  35. Glass P.J., Zeng C.Q., Estes M.K. Two Nonoverlapping domains on the norwalk virus open reading frame 3 (ORF3) protein are involved in the formation of the phosphorylated 35K protein and in ORF3-capsid protein interactions. J. Virol., 2003, vol. 77, no. 6, pp. 3569–3577. doi: 10.1128/jvi.77.6.3569-3577.2003
  36. Glass P.J., White L.J., Ball J.M., Leparc-Goffart I., Hardy M.E., Estes M.K. Norwalk virus open reading frame 3 encodes a minor structural protein. J. Virol., 2000, vol. 74, no. 14, pp. 6581–6591. doi: 10.1128/jvi.74.14.6581-6591.2000
  37. Glass R.I., Parashar U.D., Estes M.K. Norovirus gastroenteritis. N. Engl. J. Med., 2009, vol. 361, no. 18, pp. 1776–1785. doi: 10.1056/NEJMra0804575
  38. Graziano V.R., Wei J., Wilen C.B. Norovirus Attachment and Entry. Viruses, 2019, vol. 11, no. 6: 495. doi: 10.3390/v11060495
  39. Green K.Y., Kaufman S.S., Nagata B.M., Chaimongkol N., Kim D.Y., Levenson E.A., Tin C.M., Yardley A.B., Johnson J.A., Barletta A.B.F., Khan K.M., Yazigi N.A., Subramanian S., Moturi S.R., Fishbein T.M., Moore I.N., Sosnovtsev S.V. Human norovirus targets enteroendocrine epithelial cells in the small intestine. Nat. Commun., 2020, vol. 11, no. 1: 2759. doi: 10.1038/s41467-020-16491-3
  40. Haga K., Fujimoto A., Takai-Todaka R., Miki M., Doan Y.H., Murakami K., Yokoyama M., Murata K., Nakanishi A., Katayama K. Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells. Proc. Natl Acad. Sci. USA, 2016, vol. 113, no. 41, pp. E6248–E6255. doi: 10.1073/pnas.1605575113
  41. Hanajiri R., Sani G.M., Saunders D., Hanley P.J., Chopra A., Mallal S.A., Sosnovtsev S.V., Cohen J.I., Green K.Y., Bollard C.M., Keller M.D. Generation of norovirus-specific T cells from human donors with extensive cross-reactivity to variant sequences: implications for immunotherapy. J. Infect. Dis., 2020, vol. 221, no. 4, pp. 578–588. doi: 10.1093/infdis/jiz491
  42. Hansman G.S., Natori K., Shirato-Horikoshi H., Ogawa S., Oka T., Katayama K., Tanaka T., Miyoshi T., Sakae K., Kobayashi S., Shinohara M., Uchida K., Sakurai N., Shinozaki K., Okada M., Seto Y., Kamata K., Nagata N., Tanaka K., Miyamura T., Takeda N. Genetic and antigenic diversity among noroviruses. J. Gen. Virol., 2006, vol. 87, pp. 909–919. doi: 10.1099/vir.0.81532-0
  43. Hardy M.E. Norovirus protein structure and function. FEMS Microbiol. Lett., 2005, vol. 253, no. 1, pp. 1–8. doi: 10.1016/j.femsle.2005.08.031
  44. He T., Deng Y., Zhang F., Zhang J., Zhu L., Wang Q., Ning J., Wu H., Yuan H., Li B., Wu C. Characteristics of Norovirus capsid protein-specific CD8+ T-Cell responses in previously infected individuals. Virulence, 2024, vol. 15, no. 1: 2360133. doi: 10.1080/21505594.2024.2360133
  45. Hemming M., Rasanen S., Huhti L., Paloniemi M., Salminen M., Vesikari T. Major reduction of rotavirus, but not norovirus, gastroenteritis in children seen in hospital after the introduction of RotaTeq vaccine into the National Immunization Programme in Finland. Eur. J. Pediatr., 2013, vol. 172, no. 6, pp. 739–746. doi: 10.1007/s00431-013-1945-3
  46. Hoa Tran T.N., Trainor E., Nakagomi T., Cunliffe N.A., Nakagomi O. Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants. J. Clin. Virol., 2013, vol. 56, no. 3, pp. 185–193. doi: 10.1016/j.jcv.2012.11.011
  47. Hosmillo M., Chaudhry Y., Nayak K., Sorgeloos F., Koo B.K., Merenda A., Lillestol R., Drumright L., Zilbauer M., Goodfellow I. Norovirus Replication in Human Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses. mBio, 2020, vol. 11, no. 2: e00215-20. doi: 10.1128/mBio.00215-20
  48. Huang Z., Chen Q., Hjelm B., Arntzen C., Mason H. A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol. Bioeng., 2009, vol. 103, no. 4, pp. 706–714. doi: 10.1002/bit.22299
  49. Ingle H., Peterson S.T., Baldridge M.T. Distinct Effects of Type I and III Interferons on Enteric Viruses. Viruses, 2018, vol. 10, no. 1: 46. doi: 10.3390/v10010046
  50. Ishiyama R., Yoshida K., Oikawa K., Takai-Todaka R., Kato A., Kanamori K., Nakanishi A., Haga K., Katayama K. Production of infectious reporter murine norovirus by VP2 trans-complementation. J. Virol., 2024, vol. 98: e01261-23. doi: 10.1128/jvi.01261-23
  51. Jiang X., Wang M., Graham D.Y., Estes M.K. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J. Virol., 1992, vol. 66, no. 11, pp. 6527–6532. doi: 10.1128/JVI.66.11.6527-6532.1992
  52. Jin M., Zhou Y.K., Xie H.P., Fu J.G., He Y.Q., Zhang S., Jing H.B., Kong X.Y., Sun X.M., Li H.Y., Zhang Q., Li K., Zhang Y.J., Zhou D.Q., Xing W.J., Liao Q.H., Liu N., Yu H.J., Jiang X., Tan M., Duan Z.J. Characterization of the new GII.17 norovirus variant that emerged recently as the predominant strain in China. J. Gen. Virol., 2016, vol. 97, no. 10, pp. 2620–2632. doi: 10.1099/jgv.0.000582
  53. Johnson P.C., Mathewson J.J., DuPont H.L., Greenberg H.B. Multiple-challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J. Infect. Dis., 1990, vol. 161, no. 1, pp. 18–21. doi: 10.1093/infdis/161.1.18
  54. Karandikar U.C., Crawford S.E., Ajami N.J., Murakami K., Kou B., Ettayebi K., Papanicolaou G.A., Jongwutiwes U., Perales M.A., Shia J., Mercer D., Finegold M.J., Vinjé J., Atmar R.L., Estes M.K. Detection of human norovirus in intestinal biopsies from immunocompromised transplant patients. J. Gen. Virol., 2016, vol. 97, no. 9, pp. 2291–2300. doi: 10.1099/jgv.0.000545
  55. Kendra J.A., Tohma K., Ford-Siltz L.A., Lepore C.J., Parra G.I. Antigenic cartography reveals complexities of genetic determinants that lead to antigenic differences among pandemic GII.4 noroviruses. Proc. Natl Acad. Sci. USA, 2021, vol. 118, no. 11: e2015874118. doi: 10.1073/pnas.2015874118
  56. Kendra J.A., Tohma K., Parra G.I. Global and regional circulation trends of norovirus genotypes and recombinants, 1995–2019: A comprehensive review of sequences from public databases. Rev. Med. Virol., 2022, vol. 32, no. 5: e2354. doi: 10.1002/rmv.2354
  57. Kilic T., Koromyslova A., Hansman G.S. Structural Basis for Human Norovirus Capsid Binding to Bile Acids. J. Virol., 2019, vol. 93, no. 2: e01581-18. doi: 10.1128/JVI.01581-18
  58. Koo H.L., Neill F.H., Estes M.K., Munoz F.M., Cameron A., DuPont H.L., Atmar R.L. Noroviruses: the most common pediatric viral enteric pathogen at a large university hospital after introduction of rotavirus vaccination. J. Pediatric. Infect. Dis. Soc., 2013, vol. 2, no. 1, pp. 57–60. doi: 10.1093/jpids/pis070
  59. Larsson M.M., Rydell G.E., Grahn A., Rodriguez-Diaz J., Akerlind B., Hutson A.M., Estes M.K., Larson G., Svensson L. Antibody prevalence and titer to norovirus (genogroup II) correlate with secretor (FUT2) but not with ABO phenotype or Lewis (FUT3) genotype. J. Infect. Dis., 2006, vol. 194, no. 10, pp. 1422–1427. doi: 10.1086/508430
  60. Li Y., Yu P., Qu C., Li P., Li Y., Ma Z., Wang W., de Man R.A., Peppelenbosch M.P., Pan Q. MDA5 against enteric viruses through induction of interferon-like response partially via the JAK-STAT cascade. Antiviral Res., 2020, vol. 176: 104743. doi: 10.1016/j.antiviral.2020.104743
  61. Lin S.C., Qu L., Ettayebi K., Crawford S.E., Blutt S.E., Robertson M.J., Zeng X.L., Tenge V.R., Ayyar B.V., Karandikar U.C., Yu X., Coarfa C., Atmar R.L., Ramani S., Estes M.K. Human norovirus exhibits strain-specific sensitivity to host interferon pathways in human intestinal enteroids. Proc. Natl Acad. Sci. USA, 2020, vol. 117, no. 38, pp. 23782–23793. doi: 10.1073/pnas.2010834117
  62. Lindesmith L., Moe C., Marionneau S., Ruvoen N., Jiang X., Lindblad L., Stewart P., LePendu J., Baric R. Human susceptibility and resistance to Norwalk virus infection. Nat. Med., 2003, vol. 9, no. 5, pp. 548–553. doi: 10.1038/nm860
  63. Lindesmith L.C., Brewer-Jensen P.D., Mallory M.L., Jensen K., Yount B.L., Costantini V., Collins M.H., Edwards C.E., Sheahan T.P., Vinjé J., Baric R.S. Virus-Host Interactions Between Nonsecretors and Human Norovirus. Cell. Mol. Gastroenterol. Hepatol., 2020, vol. 10, no. 2, pp. 245–267. doi: 10.1016/j.jcmgh.2020.03.006
  64. Lindesmith L.C., Costantini V., Swanstrom J., Debbink K., Donaldson E.F., Vinjé J., Baric R.S. Emergence of a norovirus GII.4 strain correlates with changes in evolving blockade epitopes. J. Virol., 2013, vol. 87, no. 5, pp. 2803–2813. doi: 10.1128/JVI.03106-12
  65. Lindesmith L.C., Donaldson E.F., Lobue A.D., Cannon J.L., Zheng D.-P., Vinje J., Baric R.S. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med., 2008, vol. 5, no. 2: e31. doi: 10.1371/journal.pmed.0050031
  66. Liu J., Wang Z., Ma J., Ji S., Huo Y. Identification of a norovirus GII-specific antigenic epitope. Arch. Virol., 2024, vol. 169, no. 6: 131. doi: 10.1007/s00705-024-06060-0
  67. Liu Z., Zhang M., Shen Z., Chen H., Zhang W., Xu X., Lai Z., Sun W., Zhao Z., Zhang J. The coordinating role of the human norovirus minor capsid protein VP2 is essential to functional change and nuclear localization of the major capsid protein VP1. Arch. Virol., 2019, vol. 164, pp. 1173–1180. doi: 10.1007/s00705-019-04192-2
  68. Luttermann C., Meyers G. A bipartite sequence motif induces translation reinitiation in feline calicivirus RNA. J. Biol. Chem., 2007, vol. 282, no. 10, pp. 7056–7065. doi: 10.1074/jbc.M608948200
  69. Mallory M.L., Lindesmith L.C., Graham R.L., Baric R.S. GII.4 Human Norovirus: Surveying the Antigenic Landscape. Viruses, 2019, vol. 11, no. 2: 177. doi: 10.3390/v11020177
  70. Malm M., Uusi-Kerttula H., Vesikari T., Blazevic V. High serum levels of norovirus genotype-specific blocking antibodies correlate with protection from infection in children. J. Infect. Dis., 2014, vol. 210, no. 11, pp. 1755–1762. doi: 10.1093/infdis/jiu361
  71. Mboko W.P., Chhabra P., Valcarce M.D., Costantini V., Vinjé J. Advances in understanding of the innate immune response to human norovirus infection using organoid models. J. Gen. Virol., 2022, vol. 103, no. 1: 001720. doi: 10.1099/jgv.0.001720
  72. Mesev E.V., LeDesma R.A., Ploss A. Decoding type I and III interferon signalling during viral infection. Nat. Microbiol., 2019, vol. 4, no. 6, pp. 914–924. doi: 10.1038/s41564-019-0421-x
  73. Newman K.L., Leon J.S. Norovirus immunology: Of mice and mechanisms. Eur. J. Immunol., 2015, vol. 45, no. 10, pp. 2742–2757. doi: 10.1002/eji.201545512
  74. Newman K.L., Moe C.L., Kirby A.E., Flanders W.D., Parkos C.A., Leon J.S. Human norovirus infection and the acute serum cytokine response. Clin. Exp. Immunol., 2015, vol. 182, no. 2, pp. 195–203. doi: 10.1111/cei.12681
  75. Noel J.S., Fankhauser R.L., Ando T., Monroe S.S., Glass R.I. Identification of a distinct common strain of «Norwalk-like viruses» having a global distribution. J. Infect. Dis., 1999, vol. 179, no. 6, pp. 1334–1344. doi: 10.1086/314783
  76. Nordgren J., Svensson L. Genetic Susceptibility to Human Norovirus Infection: An Update. Viruses, 2019, vol. 11, no. 3: 226. doi: 10.3390/v11030226
  77. Nurminen K., Blazevic V., Huhti L., Räsänen S., Koho T., Hytönen V.P., Vesikari T. Prevalence of norovirus GII-4 antibodies in Finnish children. J. Med. Virol., 2011, vol. 83, no. 3, pp. 525–531. doi: 10.1002/jmv.21990
  78. Omatola C.A., Mshelbwala P.P., Okolo M.-L.O., Onoja A.B., Abraham J.O., Adaji D.M., Samson S.O., Okeme T.O., Aminu R.F., Akor M.E., Ayeni G., Muhammed D., Akoh P.Q., Ibrahim D.S., Edegbo E., Yusuf L., Ocean H.O., Akpala S.N., Musa O.A., Adamu A.M. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances — A Comprehensive Review. Vaccines, 2024, vol. 12: 590. doi: 10.3390/vaccines12060590
  79. Oparina S.V., Epifanova N.V., Novikova N.A. Phylogenetic analysis of noroviruses basedon rna-dependent rna polymerase GII.P16 gene sequences. Opera Medica et Physiologica, 2022, vol. 9, no. 3, pp. 87–97. doi: 10.24412/2500-2295-2022-3-87-97
  80. Orchard R.C., Wilen C.B., Doench J.G., Baldridge M.T., McCune B.T., Lee Y.C., Lee S., Pruett-Miller S.M., Nelson C.A., Fremont D.H., Virgin H.W. Discovery of a proteinaceous cellular receptor for a norovirus. Science, 2016, vol. 353, no. 6302, pp. 933–936. doi: 10.1126/science.aaf1220
  81. Parra G.I., Squires R.B., Karangwa C.K., Johnson J.A., Lepore C.J., Sosnovtsev S.V., Green K.Y. Static and Evolving Norovirus Genotypes: Implications for Epidemiology and Immunity. PLoS Pathog., 2017, vol. 13, no. 1: e1006136. doi: 10.1371/journal.ppat.1006136
  82. Parrino T.A., Schreiber D.S., Trier J.S., Kapikian A.Z., Blacklow N.R. Clinical immunity in acute gastroenteritis caused by Norwalk agent. N. Engl. J. Med., 1977, vol. 297, no. 2, pp. 86–89. doi: 10.1056/NEJM197707142970204
  83. Pattekar A., Mayer L.S., Lau C.W., Liu C., Palko O., Bewtra M., Consortium H., Lindesmith L.C., Brewer-Jensen P.D., Baric R.S., Betts M.R., Naji A., Wherry E.J., Tomov V.T. Norovirus-Specific CD8+ T Cell Responses in Human Blood and Tissues. Cell. Mol. Gastroenterol. Hepatol., 2021, vol. 11, no. 5, pp. 1267–1289. doi: 10.1016/j.jcmgh.2020.12.012
  84. Payne D.C., Vinjé J., Szilagyi P.G., Edwards K.M., Staat M.A., Weinberg G.A., Hall C.B., Chappell J., Bernstein D.I., Curns A.T., Wikswo M., Shirley S.H., Hall A.J., Lopman B., Parashar U.D. Norovirus and medically attended gastroenteritis in U.S. children. N. Engl. J. Med., 2013, vol. 368, no. 12, pp. 1121–1130. doi: 10.1056/NEJMsa1206589
  85. Ponterio E., Mariotti S., Tabolacci C., Ruggeri F.M., Nisini R. Virus like particles of GII.4 norovirus bind Toll Like Receptors 2 and 5. Immunol. Lett., 2019, vol. 215, pp. 40–44. doi: 10.1016/j.imlet.2019.05.016
  86. Ponterio E., Petrizzo A., Di Bartolo I., Buonaguro F.M., Buonaguro L., Ruggeri F.M. Pattern of activation of human antigen presenting cells by genotype GII.4 norovirus virus-like particles. J. Transl. Med., 2013, vol. 11: 127. doi: 10.1186/1479-5876-11-127
  87. Prasad B.V., Rothnagel R., Jiang X., Estes M.K. Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J. Virol., 1994, vol. 68, no. 8, pp. 5117–5125. doi: 10.1128/JVI.68.8.5117-5125.1994
  88. Ramani S., Neill F.H., Opekun A.R., Gilger M.A., Graham D.Y., Estes M.K., Atmar R.L. Mucosal and Cellular Immune Responses to Norwalk Virus. J. Infect. Dis., 2015, vol. 212, no. 3, pp. 397–405. doi: 10.1093/infdis/jiv053
  89. Ramani S., Atmar R.L., Estes M.K. Epidemiology of human noroviruses and updates on vaccine development. Curr. Opin. Gastroenterol., 2014, vol. 30, no. 1, pp. 25–33. doi: 10.1097/MOG.0000000000000022
  90. Reeck A., Kavanagh O., Estes M.K., Opekun A.R., Gilger M.A., Graham D.Y., Atmar R.L. Serological correlate of protection against norovirus-induced gastroenteritis. J. Infect. Dis., 2010, vol. 202, no. 8, pp. 1212–1218. doi: 10.1086/656364
  91. Roth A.N., Karst S.M. Norovirus mechanisms of immune antagonism. Curr. Opin. Virol., 2016, vol. 16, pp. 24–30. doi: 10.1016/j.coviro.2015.11.005
  92. Ryder R.W., Singh N., Reeves W.C., Kapikian A.Z., Greenberg H.B., Sack R.B. Evidence of immunity induced by naturally acquired rotavirus and Norwalk virus infection on two remote Panamanian islands. J. Infect. Dis., 1985, vol. 151, no. 1, pp. 99–105. doi: 10.1093/infdis/151.1.99
  93. Santi L., Batchelor L., Huang Z., Hjelm B., Kilbourne J., Arntzen C.J., Chen Q., Mason H.S. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine, 2008, vol. 26, no. 15, pp. 1846–1854. doi: 10.1016/j.vaccine.2008.01.053
  94. Seah E.L., Gunesekere I.C., Marshall J.A., Wright P.J. Variation in ORF3 of genogroup 2 Norwalk-like viruses. Arch. Virol., 1999, vol. 144, no. 5, pp. 1007–1014. doi: 10.1007/s007050050563
  95. Sharp T.M., Crawford S.E., Ajami N.J., Neill F.H., Atmar R.L., Katayama K., Utama B., Estes M.K. Secretory pathway antagonism by calicivirus homologues of Norwalk virus nonstructural protein p22 is restricted to noroviruses. Virol. J., 2012, vol. 9: 181. doi: 10.1186/1743-422X-9-181
  96. Sharp T.M., Guix S., Katayama K., Crawford S.E., Estes M.K. Inhibition of cellular protein secretion by norwalk virus nonstructural protein p22 requires a mimic of an endoplasmic reticulum export signal. PLoS One, 2010, vol. 5, no. 10: e13130. doi: 10.1371/journal.pone.0013130
  97. Siebenga J.J., Lemey P., Kosakovsky Pond S.L., Rambaut A., Vennema H., Koopmans M. Phylodynamic reconstruction reveals norovirus GII.4 epidemic expansions and their molecular determinants. PLoS Pathog., 2010, vol. 6, no. 5: e1000884. doi: 10.1371/journal.ppat.1000884
  98. Simmons K., Gambhir M., Leon J., Lopman B. Duration of immunity to norovirus gastroenteritis. Emerg. Infect. Dis., 2013, vol. 19, no. 8, pp. 1260–1267. doi: 10.3201/eid1908.130472
  99. Sosnovtsev S.V., Green K.Y. Identification and genomic mapping of the ORF3 and VPg proteins in feline calicivirus virions. Virology, 2000, vol. 277, no. 1, pp. 193–203. doi: 10.1006/viro.2000.0579
  100. Souza M., Cheetham S.M., Azevedo M.S., Costantini V., Saif L.J. Cytokine and antibody responses in gnotobiotic pigs after infection with human norovirus genogroup II.4 (HS66 strain). J. Virol., 2007, vol. 81, no. 17, pp. 9183–9192. doi: 10.1128/JVI.00558-07
  101. Su L., Huang W., Neill F.H., Estes M.K., Atmar R.L., Palzkill T. Mapping human norovirus antigens during infection reveals the breadth of the humoral immune response. N.P.J. Vaccines, 2023, vol. 8, no. 1: 87. doi: 10.1038/s41541-023-00683-1
  102. Tan M., Huang P., Meller J., Zhong W., Farkas T., Jiang X. Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: evidence for a binding pocket. J. Virol., 2003, vol. 77, no. 23, pp. 12562–12571. doi: 10.1128/jvi.77.23.12562-12571.2003
  103. Tan M., Jiang X. The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J. Virol., 2005, vol. 79, no. 22, pp. 14017–14030. doi: 10.1128/JVI.79.22.14017-14030.2005
  104. Tohma K., Ford-Siltz L.A., Kendra J.A., Parra G.I. Dynamic immunodominance hierarchy of neutralizing antibody responses to evolving GII.4 noroviruses. Cell Rep., 2022, vol. 39, no. 2: 110689. doi: 10.1016/j.celrep.2022.110689
  105. Tohma K., Lepore C.J., Gao Y., Ford-Siltz L.A., Parra G.I. Population Genomics of GII.4 Noroviruses Reveal Complex Diversification and New Antigenic Sites Involved in the Emergence of Pandemic Strains. mBio, 2019, vol. 10, no. 5: e02202-19. doi: 10.1128/mBio.02202-19
  106. Treanor J.J., Jiang X., Madore H.P., Estes M.K. Subclass-specific serum antibody responses to recombinant Norwalk virus capsid antigen (rNV) in adults infected with Norwalk, Snow Mountain, or Hawaii virus. J. Clin. Microbiol., 1993, vol. 31, no. 6, pp. 1630–1634. doi: 10.1128/jcm.31.6.1630-1634.1993
  107. Tsukamoto B., Kurebayashi Y., Takahashi T., Abe Y., Ota R., Wakabayashi Y., Nishiie A., Minami A., Suzuki T., Takeuchi H. VP1 of human and murine noroviruses recognizes glycolipid sulfatide via the P domain. J. Biochem., 2024, vol. 176, no. 4, pp. 299–312. doi: 10.1093/jb/mvae051
  108. Villabruna N., Izquierdo-Lara R.W., Schapendonk C.M.E., de Bruin E., Chandler F., Thao T.T.N., Westerhuis B.M., van Beek J., Sigfrid L., Giaquinto C., Goossens H., Bielicki J.A., Vasconcelos M.K., Fraaij P.L.A., Koopmans M.P.G., de Graaf M. Profiling of humoral immune responses to norovirus in children across Europe. Sci. Rep., 2022, vol. 12, no. 1: 14275. doi: 10.1038/s41598-022-18383-6
  109. Vongpunsawad S., Venkataram Prasad B.V., Estes M.K. Norwalk virus minor capsid protein VP2 associates within the VP1 Shell domain. J. Virol., 2013, vol. 87, no. 9, pp. 4818–4825. doi: 10.1128/JVI.03508-12
  110. Winder N., Gohar S., Muthana M. Norovirus: An Overview of Virology and Preventative Measures. Viruses, 2022, vol. 14, no. 12: 2811. doi: 10.3390/v14122811
  111. Wyatt R.G., Dolin R., Blacklow N.R., DuPont H.L., Buscho R.F., Thornhill T.S., Kapikian A.Z., Chanock R.M. Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross-challenge in volunteers. J. Infect. Dis., 1974, vol. 129, no. 6, pp. 709–714. doi: 10.1093/infdis/129.6.709
  112. Xue L., Wu Q., Kou X., Cai W., Zhang J., Guo W. Genome characterization of a GII.6 norovirus strain identified in China. Infect. Genet. Evol., 2015, vol. 31, pp. 110–117. doi: 10.1016/j.meegid.2015.01.027
  113. Zhang P., Hao C., Di X., Chuizhao X., Jinsong L., Guisen Z., Hui L., Zhaojun D. Global prevalence of norovirus gastroenteritis after emergence of the GII.4 Sydney 2012 variant: a systematic review and meta-analysis. Front. Public Health, 2024, vol. 12: 1373322. doi: 10.3389/fpubh.2024.1373322
  114. Zharova A.-M.D., Talayev V.Yu., Perenkov A.D., Zaichenko I.Ye., Svetlova M.V., Babaykina O.N., Voronina E.V., Lapin V.A., Novikov V.V. In silico analysis of the antigenic properties of norovirus GII.4 Sydney[P16] VP1 protein. Opera Medica et Physiologica, 2023, vol. 10, no. 3, pp. 140–151. doi: 10.24412/2500-2295-2023-3-140-151
  115. Zheng Z., Li Y., Zhang M., Liu Y., Fu M., Gong S., Hu Q. Human Norovirus NTPase Antagonizes Interferon-β Production by Interacting With IkB Kinase ε. Front. Microbiol., 2021, vol. 12: 687933. doi: 10.3389/fmicb.2021.687933
  116. Zhu S., Regev D., Watanabe M. Identification of immune and viral correlates of norovirus protective immunity through comparative study of intra-cluster norovirus strains. PLoS Pathog., 2013, vol. 9, no. 9: e1003592. doi: 10.1371/journal.ppat.1003592

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Talayev V.Y., Babaykina O.N., Kurkova E.V., Zharova A.D., Svetlova M.V., Zaichenko I.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).