Expression of CCR6 on Helicobacter pylori-specific circulating CD4+ T cells

Cover Page

Cite item

Full Text

Abstract

Introduction. Helicobacter pylori can infect human gastric mucosa and cause various pathological conditions. In the blood of H. pylori-infected patients, the level of mature CD4+CCR6+ T-lymphocytes, especially pro-inflammatory CCR6+ T-helper types 1 and 17, significantly increases. Chemokine receptor CCR6 can direct cell migration from the blood into the inflamed gastric mucosa. In this work, we assessed the in vitro response of circulating CD4+CCR6+ and CD4+CCR6 T cells against H. pylori antigens in infected and intact individuals. Materials and methods. Monocytes and lymphocytes were isolated from blood samples. Monocytes were incubated with or without H. pylori. Monocyte expression of CD14, CD80 and CD86 was assessed, and monocytes were also used to stimulate syngeneic lymphocytes. Antigen-specific lymphocyte response was assessed by proliferation and expression of the activation marker OX40 on CD4+CCR6+ and CD4+CCR6 T cells. Results. Preliminary experiments have shown that incubation of monocytes with H. pylori causes a modestly increased expression of the costimulatory molecules CD80 and CD86 on monocytes and a slightly higher level of monocyte potential to stimulate syngeneic lymphocyte proliferation. Evaluation of OX40 expression in an in vitro antigen presentation model showed that blood CD4+ T lymphocytes from infected patients contain cells that are activated by H. pylori antigens. In patients with H. pylori infection, the CD4+CCR6+ vs CD4+CCR6 lymphocyte subset contains a larger number of H. pylori antigen-specific cells. In the comparison group without H. pylori infection, the presentation of H. pylori antigens in blood cell cultures did not have a significant effect on the average rates of CD4+ T-lymphocyte activation. Conclusion. The blood of patients with H. pylori infection contains CD4+ T cells that are activated in the presence of H. pylori antigens. Blood CD4+CCR6+ vs CD4+CCR6 T cells from patients with H. pylori infection contain a greater number of antigen-specific lymphocytes.

About the authors

Vladimir Yu. Talayev

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Author for correspondence.
Email: talaev@inbox.ru

DSc (Medicine), Professor, Head of the Laboratory of Cellular Immunology

Russian Federation, Nizhniy Novgorod

I. Ye. Zaichenko

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Biology), Leading Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhniy Novgorod

M. V. Svetlova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

E. V. Voronina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

O. N. Babaykina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Medicine), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

N. V. Neumoina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Medicine), Head Physician, Infectious Diseases Clinic

Russian Federation, Nizhniy Novgorod

K. M. Perfilova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Medicine), Deputy Head Physician, Infectious Diseases Clinic

Russian Federation, Nizhniy Novgorod

References

  1. Талаев В.Ю., Бабайкина О.Н., Светлова М.В. Результаты взаимодействия эпителия желудка с Helicobacter pylori: повреждение клеток, участие эпителиоцитов в иммунном ответе, канцерогенез // Иммунология. 2021. Т. 42, № 5. С. 62–70. [Talayev V.Yu., Babaykina О.N., Svetlova M.V. Results of the interaction of gastric epithelium with Helicobacter pylori: cell damage, participation of epithelial cells in the immune response, carcinogenesis. Immunologiya = Immunologiya, 2021, vol. 42, no. 5, pp. 62–70. (In Russ.)] doi: 10.33029/0206-4952-2021-42-5-0-01
  2. Талаев В.Ю., Светлова М.В., Заиченко И.Е., Воронина Е.В., Бабайкина О.Н., Неумоина Н.В., Перфилова К.М., Уткин О.В., Филатова Е.Н. Цитокиновый профиль CCR6+ Т-хелперов, выделенных из крови пациентов с язвенной болезнью, ассоциированной с H. pylori-инфекцией // Современные технологии в медицине. 2020. Т. 12, № 3. С. 33–40. [Talayev V.Yu., Svetlova M.V., Zaichenko I.E., Voronina E.V., Babaykina O.N., Neumoina N.V., Perfilova K.M., Utkin O.V., Filatova E.N. Cytokine profile of CCR6+ T-helpers isolated from the blood of patients with peptic ulcer associated with Helicobacter pylori infection. Sovremennye tehnologii v medicine = Modern Technologies in Medicine, 2020, vol. 12, no. 3, pp. 33–40. (In Russ.)] doi: 10.17691/stm2020.12.3.04
  3. Талаев В.Ю., Талаева М.В., Воронина Е.В., Заиченко И.Е., Неумоина Н.В., Перфилова К.М., Бабайкина О.Н. Экспрессия хемокиновых рецепторов на Т-хелперах крови при заболеваниях, ассоциированных с Helicobacter pylori: хроническом гастродуодените и язвенной болезни // Инфекция и иммунитет. 2019. Т. 9, № 2. С. 295–303. [Talayev V.Yu., Talaeyva M.V., Voronina E.V., Zaichenko I.Ye., Neumoina N.V., Perfilova K.M., Babaykina O.N. Chemokine receptor expression on peripheral blood T-helper cells in Helicobacter pylori-associated diseases: chronic gastroduodenitis and peptic ulcer disease. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, vol. 9, no. 2, pp. 295–303. (In Russ.)] doi: 10.15789/2220-7619-2019-2-295-303
  4. Camilo V., Sugiyama T., Touati E. Pathogenesis of Helicobacter pylori infection. Helicobacter, 2017, vol. 22 (suppl. 1): e12405. doi: 10.1111/hel.12405
  5. Chen J.-P., Wu M.-S., Kuo S.-H., Liao F. IL-22 negatively regulates Helicobacter pylori-induced CCL20 expression in gastric epithelial cells. PLoS One, 2014, vol. 9: e97350. doi: 10.1371/journal.pone.0097350
  6. Cheng H.H., Tseng G.Y., Yang H.B., Wang H.J., Lin H.J., Wang W.C. Increased numbers of Foxp3-positive regulatory T cells in gastritis, peptic ulcer and gastric adenocarcinoma. World J. Gastroenterol., 2012, vol. 18, no. 1, pp. 34–43. doi: 10.3748/wjg.v18.i1.34
  7. Cook K.W., Letley D.P., Ingram R.J., Staples E., Skjoldmose H., Atherton J.C., Robinson K. CCL20/CCR6-mediated migration of regulatory T cells to the Helicobacter pylori-infected human gastric mucosa. Gut, 2014, vol. 63, no. 10, pp. 1550–1559. doi: 10.1136/gutjnl-2013-306253
  8. D’Elios M.M., Czinn S.J. Immunity, inflammation, and vaccines for Helicobacter pylori. Helicobacter, 2014, vol. 19 (s1), pp. 19–26. doi: 10.1111/hel.12156
  9. Eaton K.A., Mefford M., Thevenot T. The role of T cell subsets and cytokines in the pathogenesis of Helicobacter pylori gastritis in mice. J. Immunol., 2001, vol. 166, no. 12, pp. 7456–7461. doi: 10.4049/jimmunol.166.12.7456
  10. Graham D.Y., Opekun A.R., Osato M.S., El-Zimaity H.M., Lee C.K., Yamaoka Y., Qureshi W.A., Cadoz M., Monath T.P. Challenge model for Helicobacter pylori infection in human volunteers. Gut, 2004, vol. 53, no. 9, pp. 1235–1243. doi: 10.1136/gut.2003.037499
  11. Gray B.M., Fontaine C.A., Poe S.A., Eaton K.A. Complex T cell interactions contribute to Helicobacter pylori gastritis in mice. Infect. Immun., 2013, vol. 81, no. 3, pp. 740–752. doi: 10.1128/IAI.01269-12
  12. Kao J.Y., Zhang M., Miller M.J., Mills J.C., Wang B., Liu M., Eaton K.A., Zou W., Berndt B.E., Cole T.S., Takeuchi T., Owyang S.Y., Luther J. Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastroenterology, 2010, vol. 138, no. 3, pp. 1046–1054. doi: 10.1053/j.gastro.2009.11.043
  13. Kiriya K., Watanabe N., Nishio A., Okazaki K., Kido M., Saga K., Tanaka J., Akamatsu T., Ohashi S., Asada M., Fukui T., Chiba T. Essential role of Peyer’s patches in the development of Helicobacter-induced gastritis. Int. Immunol., 2007, vol. 19, no. 4, pp. 435–446. doi: 10.1093/intimm/dxm008
  14. Kleinewietfeld M., Puentes F., Borsellino G., Battistini L., Rӧtzschke O., Falk K. CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset. Blood, 2005, vol. 105, no. 7, pp. 2877–2886. doi: 10.1182/blood-2004-07-2505
  15. Kronsteiner B., Bassaganya-Riera J., Philipson C., Viladomiu M., Carbo A., Abedi V., Hontecillas R. Systems-wide analyses of mucosal immune responses to Helicobacter pylori at the interface between pathogenicity and symbiosis. Gut Microbes, 2016, vol. 7, pp. 3–21. doi: 10.1080/19490976.2015.1116673
  16. Lina T.T., Alzahrani S., Gonzalez J., Pinchuk I.V., Beswick E.J., Reyes V.E. Immune evasion strategies used by Helicobacter pylori. World J. Gastroenterol., 2014, vol. 20, pp. 12753–12766. doi: 10.3748/wjg.v20.i36.12753
  17. Marshall B.J., Warren J.R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984, vol. 1, pp. 1311–1315. doi: 10.1016/s0140-6736(84)91816-6
  18. Moyat M., Velin D. Immune responses to Helicobacter pylori infection. World J. Gastroenterol., 2014, vol. 20, pp. 5583–5593. doi: 10.3748/wjg.v20.i19.5583
  19. Müller A., Solnick J.V. Inflammation, immunity, and vaccine development for Helicobacter pylori. Helicobacter, 2011, vol. 16 (s1), pp. 26–32. doi: 10.1111/j.1523-5378.2011.00877.x
  20. Nurgalieva Z.Z., Conner M.E., Opekun A.R., Zheng C.Q., Elliott S.N., Ernst P.B., Osato M., Estes M.K., Graham D.Y. B-cell and T-cell immune responses to experimental Helicobacter pylori infection in humans. Infect. Immun., 2005, vol. 73, no. 5, pp. 2999–3006. doi: 10.1128/IAI.73.5.2999-3006.2005
  21. Reiss S., Baxter A.E., Cirelli K.M., Dan J.M., Morou A., Daigneault A., Brassard N., Silvestri G., Routy J.P., Havenar-Daughton C., Crotty S., Kaufmann D.E. Comparative analysis of activation induced marker (AIM) assays for sensitive identification of antigen-specific CD4 T cells. PLoS One, 2017, vol. 12, no. 10: e0186998. doi: 10.1371/journal.pone.0186998
  22. Roth K., Kapadia S., Martin S., Lorenz R. Cellular immune responses are essential for the development of Helicobacter felis-associated gastric pathology. J. Immunol., 1999, vol. 163, no. 3, pp. 1490–1497.
  23. Singh S.P., Zhang H.H., Tsang H., Gardina P.J., Myers T.G., Nagarajan V. Lee C.H., Farber J.M. PLZF regulates CCR6 and is critical for the acquisition and maintenance of the Th17 phenotype in human cells. J. Immunol., 2015, vol. 194, no. 9, pp. 4350–4361. doi: 10.4049/jimmunol.1401093
  24. Tarke A., Sidney J., Methot N., Yu E.D., Zhang Y., Dan J.M., Goodwin B., Rubiro P., Sutherland A., Wang E., Frazier A., Ramirez S.I., Rawlings S.A., Smith D.M., da Silva Antunes R., Peters B., Scheuermann R.H., Weiskopf D., Crotty S., Grifoni A., Sette A. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell. Rep. Med., 2021, vol. 2, no. 7: 100355. doi: 10.1016/j.xcrm.2021.100355
  25. Wu Y.-Y., Chen J.H., Kao J.T., Liu K.C., Lai C.H., Wang Y.M., Hsieh C.T., Tzen J.T., Hsu P.N. Expression of CD25(high) regulatory T cells and PD-1 in gastric infiltrating CD4(+) T lymphocytes in patients with Helicobacter pylori infection. Clin. Vaccine Immunol., 2011, vol. 18, no. 7, pp. 1198–1201. doi: 10.1128/CVI.00422-10
  26. Wu Y.-Y., Hsieh C.-T., Tsay G.J., Kao J.-T., Chiu Y.-M., Shieh D.-C., Lee Y.-J. Recruitment of CCR6+ Foxp3+ regulatory gastric infiltrating lymphocytes in Helicobacter pylori gastritis. Helicobacter, 2019, vol. 24, no. 1: e12550. doi: 10.1111/hel.12550
  27. Wu Y.-Y., Tsai H.-F., Lin W.-C., Hsu P.-I., Shun C.-T., Wu M.-S., Hsu P.-N. Upregulation of CCL20 and recruitment of CCR6+ gastric infiltrating lymphocytes in Helicobacter pylori gastritis. Infect. Immun., 2007, vol. 75, no. 9, pp. 4357–4363. doi: 10.1128/IAI.01660-06
  28. Yoshida A., Isomoto H., Hisatsune J., Nakayama M., Nakashima Y., Matsushima K., Mizuta Y., Hayashi T., Yamaoka Y., Azuma T., Moss J., Hirayama T., Kohno S. Enhanced expression of CCL20 in human Helicobacter pylori-associated gastritis. Clin. Immunol., 2009, vol. 130, no. 3, pp. 290–297. doi: 10.1016/j.clim.2008.09.016
  29. Zaunders J.J., Munier M.L., Seddiki N., Pett S., Ip S., Bailey M., Xu Y., Brown K., Dyer W.B., Kim M., de Rose R., Kent S.J., Jiang L., Breit S.N., Emery S., Cunningham A.L., Cooper D.A., Kelleher A.D. High levels of human antigen-specific CD4+ T cells in peripheral blood revealed by stimulated coexpression of CD25 and CD134 (OX40). J. Immunol., 2009, vol. 183, no. 4, pp. 2827–2836. doi: 10.4049/jimmunol.0803548
  30. Zhang K., Chen L., Zhu C., Zhang M., Liang C. Current knowledge of Th22 cell and IL-22 functions in infectious diseases. Pathogens, 2023, vol. 12, no. 2: 176. doi: 10.3390/pathogens12020176

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. H. pylori suspension DNA PCR data

Download (80KB)
3. Figure 2. Expression of monocyte membrane molecules after 20 (A) and 44 hour (B) incubation with H. pylori. Note. Data are presented as mean±standard error of the mean (M±SEM). Symbol * indicates p < 0.05 in paired Student’s T-test with Bonferroni correction.

Download (334KB)
4. Figure 3. H. pylori-loaded monocytes promote lymphocyte proliferation (A, B) but cause no loss of CCR6 receptor in CD4+ cells (C-E). Note. A) CFSE dye in lymphocytes grown without monocytes (histogram shaded in gray) and in lymphocytes grown with unloaded (thin black line) and H. pylori-loaded (thick black line) monocytes. The M1 segment marks dividing cells. Cells freshly stained with CFSE are indicated by dash line. Unstained cells here and in the following plots are indicated by a dotted line. B) The percentage of dividing lymphocytes in lymphocyte cultures (L) and in mixed cultures of lymphocytes with monocytes, not loaded (L+M) and loaded with H. pylori (L+M Hp). Data are presented as M±SEM (N = 9). Symbol * indicates p < 0.01 in dependent Student’s T-test. C) Expression of CCR6 on CD4+ (thick line) and CD8+ (thin line) blood lymphocytes before separation (С), on purified CD4+CCR6+ T cells (thick line) immediately after separation (D) and after 3 days of cultivation without monocytes (histogram with gray field) or with monocytes unloaded (thin line) and loaded with H. pylori (thick line) (E). The M2 segments mark CCR6+ cells.

Download (130KB)
5. Figure 4. Percentage of activated OX40+ CD4+ T cells with varying CCR6 expression level in lymphocyte cultures (L) and mixed lymphocyte cultures with monocytes loaded (L+M) or not with H. pylori antigens (L+M Hp). Note. A) The box plot shows medians, lower and upper quartiles, minimum and maximum values. The comparison results in the Wilcoxon matched pairs rank test are shown by the following signs: *p < 0.01; **p < 0.005; ***p < 0.001. B) Data are presented as individual values. The subjects were divided by age.

Download (222KB)

Copyright (c) 2024 Talayev V.Y., Zaichenko I.Y., Svetlova M.V., Voronina E.V., Babaykina O.N., Neumoina N.V., Perfilova K.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).