Features of influenza virus hemagglutinin genes and their recoding possibilities

Cover Page

Cite item

Full Text

Abstract

The world has already entered the stage of increasing odds for a new pandemic, which prompts to seek out for new flu vaccines, because existing vaccines demonstrate only suboptimal effectiveness. With the Covid-19 pandemic, the possibility of using mRNA vaccines has been opened up, and a prospect of finding hemagglutinin (HA) gene mRNA-based new influenza vaccines seems very attractive. As a rule, the mRNA vaccine is a product of recoding, which ensures the mRNA stability. However, the results of mRNA recoding can be ambiguous. The purpose of this report is to analyze the features of genes and proteins and to consider opportunities and limitations in their recoding. Primary structures of NA proteins and relevant genes were retrieved from Internet publicly available databases. The amino acid composition and frequency of dipeptides, nucleotide and dinucleotide compositions, %GC, translational code and compositions of neighboring di- and tricodones, distribution along primary structure for explicit and synonymous mutations were determined. H1N1 and H3N2 subtypes have both specific and general features (limitations) in their genes, differing not only in the number of protein substitutions, but also in the number and distribution of gene synonymous codons, which do not manifest in the protein primary structure, but appear, apparently, as a hidden factor, which causes the low effectiveness of classical influenza vaccines. The identification of several limitations in gene structure suggests that its any modification (in any gene) must not contradict each of the restrictions established by nature. The frequency of CpG dinucleotides in all studied strains is low, but a potential for optimizing it in H1N1 strains due to the prohibition of the quartet in the gene for arginine-encoding codons is especially limited and can be implemented through synonymous codons of other amino acids (alanine, proline, threonine or serine). Compared to the H1N1 subtype, the H3N2 subtype can be expected to have more possibilities in constructing stable NA gene mRNA.

About the authors

Eugene P. Kharchenko

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: neuro.children@mail.ru

DSc (Biology), Senior Researcher

Russian Federation, St. Petersburg

References

  1. Харченко Е.П. Поиски универсальной противогриппозной вакцины: возможности и ограничения // Эпидемиология и вакцинопрофилактика. 2019. Т. 18, № 5. C. 70–84. [Kharchenko E.P. The search for a universal influenza vaccine: possibilities and limitations. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccine Prevention, 2019, vol. 18, no. 5, pp. 70–84. (In Russ.)] doi: 10.31631/2073-3046-2019-18-5-70-84
  2. Харченко Е.П. Проблемы и коллизии вакцинологии // Эпидемиология и вакцинопрофилактика. 2023. Т. 22, № 6. С. 183–200. [Kharchenko E.P. Problems and Collisions of Vaccinology. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccine Prevention, 2023, vol. 22, no. 6, pp. 183–200. (In Russ.)] doi: 10.31631/2073-3046-2023-22-6-183-200
  3. Altmann D.M., Boyton R.J. COVID-19 vaccination: the road ahead. Science., 2022, vol. 375, no. 6585, pp. 1127–1132. doi: 10.1126/science.abn1755
  4. Erbelding E.J., Post D.J., Stemmy E.J., Roberts P.C., Augustine A.D., Ferguson S., Paules C.I., Graham B.S., Fauci A.S. A universal influenza vaccine: the strategic plan for the National Institute of Allergy and Infectious Diseases. J. Infect. Dis., 2018, vol. 218, no. 3, pp. 347–354. doi: 10.1093/infdis/jiy103
  5. Global influenza strategy 2019–2030. World Health Organization. URL: https://www.who.int/publications/i/item/978924151532015
  6. Gonçalves-Carneiro D., Bieniasz P.D. Mechanisms of attenuation by genetic recoding of viruses. mBio, 2021, vol. 12, no. 1: e02238-20. doi: 10.1128/mBio.02238-20
  7. Knyazev S., Chhugani K., Sarwal V., Ayyala R., Singh H., Karthikeyan S., Deshpande D., Baykal P.I., Comarova Z., Lu A., Porozov Y., Vasylyeva T.I., Wertheim J.O., Tierney B.T., Chiu C.Y., Sun R., Wu A., Abedalthagafi M.S., Pak V.M., Nagaraj S.H., Smith A.L., Skums P., Pasaniuc B., Komissarov A., Mason C.E., Bortz E., Lemey P., Kondrashov F., Beerenwinkel N., Lam T.T., Wu N.C., Zelikovsky A., Knight R., Crandall K.A., Mangul S. Unlocking capacities of genomics for the COVID-19 response and future pandemics. Nat. Methods, 2022, vol. 19, no. 4, pp. 374–380. doi: 10.1038/s41592-022-01444-z
  8. Komar A.A. [Synonymous codon usage — a guide for co-translational protein folding in the cell]. Mol. Biol. (Mosk.), 2019, vol. 53, no. 6, pp. 883–898. doi: 10.1134/S0026898419060090
  9. Lin B.C., Kaissarian N.M., Kimchi-Sarfaty C. Implementing computational methods in tandem with synonymous gene recoding for therapeutic development. Trends Pharmacol. Sci., 2023, vol. 44, no. 2, pp. 73–84. doi: 10.1016/j.tips.2022.09.008
  10. Martínez M.A., Jordan-Paiz A., Franco S., Nevot M. Synonymous virus genome recoding as a tool to impact viral fitness. Trends Microbiol., 2016, vol. 24, no. 2, pp. 134–147. doi: 10.1016/j.tim.2015.11.002
  11. Morens D.M., Taubenberger J.K., Fauci A.S. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell. Host Microbe, 2023, vol. 31, no. 1, pp. 146–157. doi: 10.1016/j.chom.2022.11.016
  12. Ostrov N., Nyerges A., Chiappino-Pepe A., Rudolph A., Baas-Thomas M., Church G.M. Synthetic genomes with altered genetic codes. Curr. Opin. Syst. Biol., 2020, vol. 24, pp. 32–40. doi: 10.1016/j.coisb.2020.09.007
  13. Tian Y., Deng Z., Yang P. mRNA vaccines: A novel weapon to control infectious diseases. Front. Microbiol., 2022, no. 13: 1008684. doi: 10.3389/fmicb.2022.1008684
  14. Yang L., Tang L., Zhang M., Liu C. Recent advances in the molecular design and delivery technology of mRNA for vaccination against infectious diseases. Front. Immunol., 2022, no. 13: 896958. doi: 10.3389/fimmu.2022.896958

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Table of the genetic code with the given values of the codon complementarity indiсes

Download (441KB)
3. Figure 2. The composition of dinucleotides in the genes of pandemic strains of influenza viruses

Download (305KB)
4. Figure 3. Translation code table for H1N1 strains A/Brevig Mission/1/1918 and A/California/04/2009

Download (722KB)
5. Figure 4. The occurrence of dicodones and dipeptides in A/Brevig Mission/1/1918 H1N1. Note. The first vertical row and the first horizontal row from above are amino acid designations; the second vertical row and the second horizontal row from above are codon numbering; the third vertical row are codons.

Download (1MB)
6. Figure 5. List of rare (A) and undetected (B) dicodons in the studied human genes

Download (828KB)
7. Figure 6. The sequence of values of the tricodon complementarity indiсеs of the H1N1 A/Brevig Mission/1/1918 НА gene when the reading frame is shifted by 1 codon

Download (1MB)
8. Figure 7. Differences in the primary structures of the HA fragment in the pandemic strains A/Brevig Mission/1/1918 and A/California/04/2009

Download (812KB)
9. Figure 8. An illustration of the calculation of a complementarity index in tricodons read by a shift of one codon. Note. The 1st row of letters is a sequence of amino acids, the 2nd row — a designation of codons, the 3rd row — a designation of codon complementarity indices, the 4th row — a designation of tricodon complementarity indices.

Download (129KB)
10. Figure 9. Fragment of the dominant hemagglutinin sequence for H3N2 strains of the epidemic seasons 2018–2019

Download (239KB)

Copyright (c) 2024 Kharchenko E.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).