The avidity of virus-specific antibodies obtained from in vitro stimulated memory b cells does not change one month after booster with Sputnik V or Comirnaty

Cover Page

Cite item

Full Text

Abstract

The protective properties of long-term immunological memory after vaccination against COVID-19 are characterized by the neutralizing activity of serum antibodies and antibodies secreted by memory B cells upon repeated encounter with the antigen. Somatic hypermutations occurring in the immunoglobulin genes of memory B cells are one of the mechanisms for increasing the affinity of antibodies. At the moment, the effect of booster vaccination against COVID-19 with vector vaccines, on the maturation of memory B cells remains poorly understood. The purpose of this work was to determine how COVID-19 booster affects the affinity of RBD-specific IgG antibodies secreted by memory B cells. B lymphocytes were isolated from peripheral mononuclear blood cells of volunteers who had been revaccinated against COVID-19 with Sputnik V or Comirnaty. B cells were stimulated in vitro with CD40L expressed on the surface of A549 feeder cells and IL-21. Supernatants were concentrated 8-fold using centrifugal concentrators. In the obtained supernatants from stimulated memory B cells, the level of IgG antibodies specific to wild-type RBD was determined by enzyme-linked immunosorbent assay (ELISA). To determine the avidity index, ELISA with 7M urea was provided. It was shown that despite a general increase in the amount of antigen-specific IgG antibodies obtained from stimulated memory B cells, there was no change in the avidity of these antibodies one month after booster in both groups of donors. The obtained results contribute to the understanding of the mechanisms of memory B cell maturation after booster vaccinations against COVID-19 and may be useful for deciding on the strategy of booster vaccination.

About the authors

Ekaterina A. Astakhova

National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia; Lomonosov Moscow State University

Author for correspondence.
Email: ast_kat@mail.ru

Junior Researcher, PhD Student, Department of Immunology, Biology Faculty

Russian Federation, Moscow 115522; Moscow 119991

References

  1. Топтыгина А.П., Афридонова З.Э., Закиров Р.Ш., Семикина Е.Л. Поддержание иммунологической памяти к вирусу SARS-CoV-2 в условиях пандемии // Инфекция и иммунитет. 2023. Т. 13, № 1. C. 55–66. [Toptygina A.P., Afridonova Z.E., Zakirov R.Sh., Semikina E.L. Maintaining immunological memory to the SARS-CoV-2 virus during COVID-19 pandemic. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 1, pp. 55–66. (In Russ.)] doi: 10.15789/2220-7619-MIM-2009
  2. Astakhova E.A., Byazrova M.G., Yusubalieva G.M., Kulemzin S.V., Kruglova N.A., Prilipov A.G., Baklaushev V.P., Gorchakov A.A., Taranin A.V., Filatov A.V. Functional Profiling of In Vitro Reactivated Memory B cells Following Natural SARS-CoV-2 Infection and Gam-COVID-Vac Vaccination. Cells, 2022, vol. 11, no. 13. doi: 10.3390/cells11131991
  3. Cho A., Muecksch F., Schaefer-Babajew D., Wang Z., Finkin S., Gaebler C., Ramos V., Cipolla M., Mendoza P., Agudelo M., Bednarski E., DaSilva J., Shimeliovich I., Dizon J., Daga M., Millard K.G., Turroja M., Schmidt F., Zhang F., Tanfous T. Ben, Jankovic M., Oliveria T.Y., Gazumyan A., Caskey M., Bieniasz P.D., Hatziioannou T., Nussenzweig M.C. Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. Nature, 2021, vol. 600, no. 7889, pp. 517–522. 10.1038/s41586-021-04060-7
  4. Gallais F., Gantner P., Bruel T., Velay A., Planas D., Wendling M.J., Bayer S., Solis M., Laugel E., Reix N., Schneider A., Glady L., Panaget B., Collongues N., Partisani M., Lessinger J.M., Fontanet A., Rey D., Hansmann Y., Kling-Pillitteri L., Schwartz O., De Sèze J., Meyer N., Gonzalez M., Schmidt-Mutter C., Fafi-Kremer S. Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection. EBioMedicine, 2021, vol. 71: 103561. doi: 10.1016/j.ebiom.2021.103561
  5. Goel R.R., Painter M.M., Apostolidis S.A., Mathew D., Meng W., Rosenfeld A.M., Lundgreen K.A., Reynaldi A., Khoury D.S., Pattekar A., Gouma S., Kuri-Cervantes L., Hicks P., Dysinger S., Hicks A., Sharma H., Herring S., Korte S., Baxter A.E., Oldridge D.A., Giles J.R., Weirick M.E., McAllister C.M., Awofolaju M., Tanenbaum N., Drapeau E.M., Dougherty J., Long S., D’Andrea K., Hamilton J.T., McLaughlin M., Williams J.C., Adamski S., Kuthuru O.; UPenn COVID Processing Unit‡; Frank I., Betts M.R., Vella L.A., Grifoni A., Weiskopf D., Sette A., Hensley S.E., Davenport M.P., Bates P., Luning Prak E.T., Greenplate A.R., Wherry E.J. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science, 2021, vol. 374, no. 6572: abm0829. doi: 10.1126/science.abm0829
  6. Inoue T., Kurosaki T. Memory B cells. Nat. Rev. Immunol., 2024, vol. 24, no. 1, pp. 5–17. doi: 10.1038/s41577-023-00897-3
  7. Kim W., Zhou J.Q., Horvath S.C., Schmitz A.J., Sturtz A.J., Lei T., Liu Z., Kalaidina E., Thapa M., Alsoussi W.B., Haile A., Klebert M.K., Suessen T., Parra-Rodriguez L., Mudd P.A., Whelan S.P.J., Middleton W.D., Teefey S.A., Pusic I., O’Halloran J.A., Presti R.M., Turner J.S., Ellebedy A.H. Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature, 2022, vol. 604, no. 7904, pp. 141–145. doi: 10.1038/s41586-022-04527-1
  8. Nakagama Y., Candray K., Kaku N., Komase Y., Rodriguez-Funes M.V., Dominguez R., Tsuchida T., Kunishima H., Nagai E., Adachi E., Ngoyi D.M., Yamasue M., Komiya K., Hiramatsu K., Uemura N., Sugiura Y., Yasugi M., Yamagishi Y., Mikamo H., Shiraishi S., Izumo T., Nakagama S., Watanabe C., Nitahara Y., Tshibangu-Kabamba E., Kakeya H., Kido Y. Antibody Avidity Maturation Following Recovery From Infection or the Booster Vaccination Grants Breadth of SARS-CoV-2 Neutralizing Capacity. J. Infect. Dis., 2023, vol. 227, no. 6, pp. 780–787. doi: 10.1093/infdis/jiac492
  9. Pušnik J., König J., Mai K., Richter E., Zorn J., Proksch H., Schulte B., Alter G., Streeck H. Persistent Maintenance of Atypical Memory B cells Following SARS-CoV-2 Infection and Vaccination Recall Response. J. Virology, 2022, vol. 96, no. 15: e00760-22. doi: 10.2139/ssrn.4072040
  10. Röltgen K., Boyd S.D. Antibody and B cell responses to SARS-CoV-2 infection and vaccination. Cell. Host Microbe, 2021, vol. 29, no. 7, pp. 10⁶3–1075. doi: 10.1016/j.chom.2021.06.009
  11. Sette A., Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, vol. 184, no. 4, pp. 861–880. doi: 10.1016/j.cell.2021.01.007
  12. Sette A., Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol. Rev., 2022, vol. 310, no. 1, pp. 27–46. doi: 10.1111/imr.13089
  13. Singh G., Abbad A., Tcheou J., Mendu D.R., Firpo-Betancourt A., Gleason C., Srivastava K., Cordon-Cardo C., Simon V., Krammer F., Carreño J.M. Binding and Avidity Signatures of Polyclonal Sera From Individuals With Different Exposure Histories to Severe Acute Respiratory Syndrome Coronavirus 2 Infection, Vaccination, and Omicron Breakthrough Infections. J. Infect. Dis., 2023, vol. 228, no. 5, pp. 564–575. doi: 10.1093/infdis/jiad116
  14. Sokal A., Chappert P., Barba-Spaeth G., Roeser A., Fourati S., Azzaoui I., Vandenberghe A., Fernandez I., Meola A., Bouvier-Alias M., Crickx E., Beldi-Ferchiou A., Hue S., Languille L., Michel M., Baloul S., Noizat-Pirenne F., Luka M., Mégret J., Ménager M., Pawlotsky J.M., Fillatreau S., Rey F.A., Weill J.C., Reynaud C.A., Mahévas M. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell, 2021, vol. 184, no. 5, pp. 1201–1213.e14. doi: 10.1016/j.cell.2021.01.050
  15. Turner J.S., Kim W., Kalaidina E., Goss C.W., Rauseo A.M., Schmitz A.J., Hansen L., Haile A., Klebert M.K., Pusic I., O’Halloran J.A., Presti R.M., Ellebedy A.H. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature, 2021, vol. 595, no. 7867, pp. 421–425. doi: 10.1038/s41586-021-03647-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Increase in the level of anti-RBD IgG antibodies in the supernatants of stimulated B lymphocytes after revaccination

Download (231KB)
3. Figure 2. Change in avidity index of supernatants depending on urea concentration

Download (323KB)
4. Figure 3. Avidity index of RBD-specific IgG antibodies in the supernatants of in vitro stimulated B lymphocytes after revaccination

Download (244KB)

Copyright (c) 2024 Astakhova E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).