Микробиологическая и молекулярно-генетическая характеристика изолятов Klebsiella pneumoniae, выделенных в условиях кардиохирургического стационара
- Авторы: Кузнецова М.В.1,2, Сергевнин В.И.2, Михайловская В.С.1, Кудрявцева Л.Г.3, Пегушина О.Г.3
-
Учреждения:
- Институт экологии и генетики микроорганизмов УрО РАН — филиал Пермского федерального исследовательского центра УрО РАН
- ФГБОУ ВО Пермский государственный медицинский университет имени академика Е.А. Вагнера Минздрава России
- ФГБУ Федеральный центр сердечно-сосудистой хирургии имени С.Г. Суханова Минздрава России
- Выпуск: Том 14, № 1 (2024)
- Страницы: 103-114
- Раздел: ОРИГИНАЛЬНЫЕ СТАТЬИ
- URL: https://ogarev-online.ru/2220-7619/article/view/256771
- DOI: https://doi.org/10.15789/2220-7619-MAM-15631
- ID: 256771
Цитировать
Полный текст
Аннотация
Klebsiella pneumoniae является одним из основных возбудителей инфекций, связанных с оказанием медицинской помощи (ИСМП), во всем мире. Цель исследования: молекулярно-генетическая характеристика устойчивости к бета-лактамным антибиотикам культур K. pneumoniae, выделенных в условиях кардиохирургического стационара, выявление гипервирулентных изолятов, а также оценка генетического родства культур. Были изучены изоляты, выделенные из клинического материала пациентов (n = 50) кардиохирургических отделений и отделения анестезиологии и реанимации (ОАиР), находившихся на лечении в кардиохирургическом стационаре г. Перми с июля 2021 г. по декабрь 2022 г. Бактериологические исследования были выполнены на автоматическом анализаторе «WalkAway-96Plus» (Beckman Coulter, США). Определена чувствительность культур к тринадцати антимикробным препаратам и продукция бета-лактамаз расширенного спектра (БЛРС), оценен фенотип множественной лекарственной устойчивости (МЛУ). Для определения гипермукоидного фенотипа K. pneumoniae использовали стринг-тест. Родственность изолятов (ERIC-ПЦР), присутствие генов бета-лактамаз (blaTEM, blaCTX-M, blaSHV, blaOXA, blaKPC, blaVIM-2, blaIMP-1, blaNDM-1), а также генов, ассоциированных с гипервирулентностью (prmpA, iucA, peg-344, wzyK2, magA), определяли методом ПЦР по конечной точке. Амплификацию проводили на термоциклере «DNA Engine Dyad Thermal Cycler» (Bio-Rad, США), визуализацию полос и документирование данных осуществляли с помощью системы гель-документации «Gel-Doc XR» (Bio-Rad, США). По результатам исследования установлено, что карбапенемоустойчивые K. pneumoniae составили почти 76% всех культур, фенотип БЛРС имели 90%, а МЛУ — 88% изолятов. Среди определенных бета-лактамаз наиболее широко в коллекции культур были представлены ферменты типов СТХ-М, VIM-2 и NDM-1, гены которых часто локализованы на мобильных генетических элементах, обеспечивающих быстрое внутри- и межвидовое распространение. Согласно результатам стринг-теста, гипермукоидный фенотип имели 8% изолятов K. pneumoniae. В отношении генов, ассоциированных с гипервирулентностью, показано, что наиболее распространенным оказался ген iucA, амплифицированный у 54% изолятов, prmpA детектировали у 38% культур, 48% культур имели гены wzyK2 или magA, маркирующие капсулы типа К1/К2. Почти треть K. pneumoniae содержали комбинацию генов rmpA и iucA, при этом выделяли их чаще в группе пациентов с активной инфекцией. Гипермукоидный фенотип, капсульный тип К1 и комбинацию генов prmpA, iucA, peg-344 имели только чувствительные к карбапенемам культуры, тогда как капсульный тип К2 был наиболее распространен среди устойчивых к карбапенемам K. pneumoniae. На основании молекулярно-генетического типирования выявлено, что 24% культур K. pneumoniae распределились в 4 геномогруппы идентичных изолятов, 76% культур имели индивидуальные профили. Обнаружены близкородственные изоляты у пациентов разных отделений, что указывает на возможную циркуляцию возбудителя в замкнутом контуре «отделение–ОАиР–отделение».
Полный текст
Открыть статью на сайте журналаОб авторах
М. В. Кузнецова
Институт экологии и генетики микроорганизмов УрО РАН — филиал Пермского федерального исследовательского центра УрО РАН; ФГБОУ ВО Пермский государственный медицинский университет имени академика Е.А. Вагнера Минздрава России
Автор, ответственный за переписку.
Email: mar@iegm.ru
д.м.н., ведущий научный сотрудник лаборатории молекулярной биотехнологии
Россия, Пермь; ПермьВ. И. Сергевнин
ФГБОУ ВО Пермский государственный медицинский университет имени академика Е.А. Вагнера Минздрава России
Email: mar@iegm.ru
д.м.н., профессор кафедры эпидемиологии и гигиены
Россия, ПермьВ. С. Михайловская
Институт экологии и генетики микроорганизмов УрО РАН — филиал Пермского федерального исследовательского центра УрО РАН
Email: mar@iegm.ru
бакалавр, инженер лаборатории молекулярной биотехнологии
Россия, ПермьЛ. Г. Кудрявцева
ФГБУ Федеральный центр сердечно-сосудистой хирургии имени С.Г. Суханова Минздрава России
Email: mar@iegm.ru
к.м.н., врач-эпидемиолог, зав. эпидемиологическим отделом
Россия, ПермьО. Г. Пегушина
ФГБУ Федеральный центр сердечно-сосудистой хирургии имени С.Г. Суханова Минздрава России
Email: mar@iegm.ru
врач-бактериолог
Россия, ПермьСписок литературы
- Агеевец В.A., Агеевец И.В., Сидоренко С.В. Конвергенция множественной резистентности и гипервирулентности у Klebsiella pneumoniae // Инфекция и иммунитет. 2022. Т. 12, № 3. C. 450–460. [Ageevets V.A., Ageevets I.V., Sidorenko S.V. Convergence of multiple resistance and hypervirulence in Klebsiella pneumoniae. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 450–460. (In Russ.)] doi: 10.15789/2220-7619-COM-1825
- Алексеева А.Е., Бруснигина Н.Ф., Гординская Н.А. Молекулярно-генетическая характеристика карбапенем-устойчивого штамма Klebsiella pneumoniae KP254 как представителя эволюционной ветки высоковирулентных штаммов // Инфекция и иммунитет. 2021. Т. 11, № 3. C. 506–516. [Alekseeva A.E., Brusnigina N.F., Gordinskaya N.A. Molecular genetic characteristics of the carbapenem-resistant Klebsiella pneumoniae KP254 strain as a representative of the highly virulent strain evolutionary branch. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 3, pp. 506–516. (In Russ.)] doi: 10.15789/2220-7619-MGC-1480
- Егорова С.А., Кафтырева Л.А., Липская Л.В., Коноваленко И.Б., Пясетская М.Ф., Курчикова Т.С., Ведерникова Н.Б., Морозова О.Т., Смирнова М.В., Попенко Л.Н., Любушкина М.И., Савочкина Ю.А., Макарова М.А., Сужаева Л.В., Останкова Ю.В., Иванова М.Н., Павелкович А.М., Наабер П., Сепп Э., Кыльялг С., Мицюлявичене И., Балоде А. Штаммы энтеробактерий, продуцирующие бета-лактамазы расширенного спектра и металло-β-лактамазу ndm-1, выделенные в стационарах в странах Балтийского региона // Инфекция и иммунитет. 2013. Т. 3, № 1. С. 29–36. [Egorova S.A., Kaftyreva L.A., Lipskaya L.V., Konovalenko I.B., Pyasetskaya M.F., Kurchikova T.S., Vedernikova N.B., Morozova O.T., Smirnova M.V., Popenko L.N., Lyubushkina M.I., Savochkina Yu.A., Makarova M.A., Suzhaeva L.V., Ostankova Yu.V., Ivanova M.N., Pavelkovich A.M., Naaber P., Sepp E., Kyl’yalg S., Mitsyulyavichene I., Balode A. Enterobacteriacae, producing ESBLs and metallo-β-lactamase NDM-1, isolated in hospitals of Baltic region countries. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2013, vol. 3, no. 1, pp. 29–36. (In Russ.)] doi: 10.15789/2220-7619-2013-1-29-36
- Лазарева И.В., Агеевец В.А., Ершова Т.А., Зуева Л.П., Гончаров А.Е., Дарьина М.Г., Светличная Ю.С., Усков А.Н., Сидоренко С.В. Распространение и антибактериальная резистентность грамотрицательных бактерий, продуцентов карбапенемаз, в Санкт-Петербурге и некоторых других регионах Российской Федерации // Антибиотики и химиотерапия. 2000. Т. 61. С. 11–12. [Lazareva I.V., Ageevets V.A., Ershova T.A., Zueva L.P., Goncharov A.E., Darina M.G., Svetlichnaya Yu.S., Uskov A.N., Sidorenko S.V. Distribution and antibacterial resistance of gram-negative bacteria, producers of carbapenemases, in St. Petersburg and some other regions of the Russian Federation. Antibiotiki i khimioterapia = Antibiotics and Chemotherapy, 2000, vol. 61, pp. 11–12. (In Russ.)]
- Кузина Е.С., Асташкин Е.И., Лев А.И., Агеева Е.Н., Карцев Н.Н., Светоч Э.А., Фурсова Н.К. Интегроны классов 1 и 2 в госпитальных штаммах грамотрицательных бактерий, выделенных в Москве и регионах Российской Федерации // Молекулярная генетика, микробиология и вирусология. 2019. Т. 37, № 1. С. 17–24. [Kuzina E.S., Astashkin E.I., Lev A.I., Ageeva E.N., Kartsev N.N., Svetoch E.A., Fursova N.K. Class 1 and class 2 integrons in hospital strains of gram-negative bacteria isolated in Moscow and other regions of the Russian Federation. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology, 2019, vol. 37, no 1, pp. 17–24. (In Russ.)] doi: 10.17116/molgen20193701117
- Семенова Д.Р., Николаева И.В., Фиалкина С.В., Хаертынов Х.С., Анохин В.А., Валиуллина И.Р. Частота колонизации «гипервирулентными» штаммами Klebsiella pneumoniae новорожденных и грудных детей с внебольничной и нозокомиальной клебсиеллезной инфекцией // Российский вестник перинатологии и педиатрии. 2020. Т. 65, № 5. С. 158–163. [Semenova D.R., Nikolaeva I.V., Fialkina S.V., Khaertynov K.S., Anohin V.A., Valiullina I.R. Frequency of colonization with “hypervirulent” Klebsiella pneumoniae strains of newborns and infants with community-acquired and nosocomial klebsiella infection. Rossiyskiy Vestnik Perinatologii i Pediatrii = Russian Bulletin of Perinatology and Pediatrics, 2020, vol. 65, no. 5, pp. 158–163. (In Russ.)] doi: 10.21508/1027-4065-2020-65-5-158-163
- Сергевнин В.И., Кудрявцева Л.Г., Пегушина О.Г. Частота выявления и антибиотикорезистентность возбудителей гнойно-септических инфекций // Эпидемиология и вакцинопрофилактика. 2022. Т. 21, № 1. С. 74–80. [Sergevnin V.I., Kudryavtseva L.G., Pegyshina O.G. Rate of detection and antibiotic resistance pathogens of purulent-septic infections in cardiac surgery patients. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccine Prevention, 2022, vol. 21, no. 1, pp. 74–80. (In Russ.)] doi: 10.31631/2073-3046-2022-21-1-74-80
- Чеботарь И.В., Бочарова Ю.А., Подопригора И.В., Шагин Д.А. Почему Klebsiella pneumoniae становится лидирующим оппортунистическим патогеном // Клиническая микробиология и антимикробная химиотерапия. 2020. Т. 22, № 1. С. 4–19. [Chebotar I.V., Bocharova Yu.A., Podoprigora I.V., Shagin D.A. The reasons why Klebsiella pneumoniae becomes a leading opportunistic pathogen. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2020, vol. 22, no. 1, pp. 4–19. (In Russ.)] doi: 10.36488/cmac.2020.1.4-19
- Bhatt P.J., Ali M., Rana M., Patel G., Sullivan T., Murphy J., Pinney S., Anyanwu A., Huprikar S., Taimur S. Infections due to multidrug-resistant organisms following heart transplantation: epidemiology, microbiology, and outcomes. Transpl. Infect. Dis., 2020, vol. 22, no. 1: e13215. doi: 10.1111/tid.13215
- Gonçalves Barbosa L.C., Silva E Sousa J.A., Bordoni G.P., Barbosa G.O., Carneiro L.C. Elevated mortality risk from CRKp associated with comorbidities: systematic review and meta-analysis. Antibiotics (Basel)., 2022, vol. 11, no. 7: 874. doi: 10.3390/antibiotics11070874
- Chang D., Sharma L., Dela Cruz C.S., Zhang D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front. Microbiol., 2021, vol. 12: 750662. doi: 10.3389/fmicb.2021.750662
- Del Puente F., Giacobbe D.R., Salsano A., Maraolo A.E., Ong D.S.Y., Yusuf E., Tutino S., Marchese A., Santini F., Viscoli C. Epidemiology and outcome of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-KP) infections in cardiac surgery patients: a brief narrative review. J. Chemother., 2019, vol. 31, no. 7–8, pp. 359–366. doi: 10.1080/1120009X.2019.1685794
- Edelstein M., Pimkin M., Palagin I., Edelstein I., Stratchounski L. Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob. Agents Chemother., 2003, vol. 47, no. 12, pp. 3724–3732. doi: 10.1128/aac.47.12.3724-3732.2003
- Fang C.T., Chuang Y.P., Shun C.T., Chang S.C., Wang J.T. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J. Exp. Med., 2004, vol. 199, no. 5, pp. 697–705. doi: 10.1084/jem.20030857
- Galvão L.M., Oliveira A.P.R., Ibanês A.S., Monteiro J., Inoue F., Dantas D.C., Sanchez F., Santos D.W., Abboud C.S. Fatal case of donor-derived colistin-resistant carbapenemase-producing Klebsiella pneumoniae transmission in cardiac transplantation. Braz. J. Infect. Dis., 2018, vol. 22. no. 3, pp. 235–238. doi: 10.1016/j.bjid.2018.04.005
- Ghanizadeh A., Najafizade M., Rashki S., Marzhoseyni Z., Motallebi M. Genetic diversity, antimicrobial resistance pattern, and biofilm formation in Klebsiella pneumoniae Isolated from patients with coronavirus disease 2019 (COVID-19) and ventilator-associated pneumonia. Biomed. Res. Int., 2021, vol. 2021: 2347872. doi: 10.1155/2021/2347872
- Gorrie C.L., Mirčeta M., Wick R.R., Judd L.M., Lam M.M.C., Gomi R., Abbott I.J., Thomson N.R., Strugnell R.A., Pratt N.F., Garlick J.S., Watson K.M., Hunter P.C., Pilcher D.V., McGloughlin S.A., Spelman D.W., Wyres K.L., Jenney A.W.J., Holt K.E. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat. Commun., 2022, vol. 13, no. 1: 3017. doi: 10.1038/s41467-022-30717-6
- Grigoryev E.V., Shukevich D.L., Matveeva V.G., Kornekyuk R.A. Immunosuppression as a component of multiple organ dysfunction syndrome followed cardiac surgery. Complex Issues of Cardiovascular Diseases, 2018, vol. 7 no. 4, pp. 84–91. doi: 10.17802/2306-1278-2018-7-4-84-91
- Gu D., Dong N., Zheng Z., Lin D., Huang M., Wang L., Chan E.W., Shu L., Yu J., Zhang R., Chen S. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect. Dis., 2018, vol. 18, no. 1, pp. 37–46. doi: 10.1016/S1473-3099(17)30489-9
- Huey B., Hall J., Hypervariable DNA fingerprinting in Escherichia coli: minisatellite probe from bacteriophage M13. J. Bacteriol., 1989, vol. 171, no. 5, pp. 2528–2532. doi: 10.1128/jb.171.5.2528-2532.1989
- Kundu J., Kansal S., Rathore S., Kaundal M., Angrup A., Biswal M., Walia K., Ray P., Evaluation of ERIC-PCR and MALDI-TOF as typing tools for multidrug resistant Klebsiella pneumoniae clinical isolates from a tertiary care center in India. PLoS One, 2022, vol. 17, no. 11: e0271652. doi: 10.1371/journal.pone.0271652
- Lazareva I., Ageevets V., Sopova J., Lebedeva M., Starkova P., Likholetova D., Gostev V., Moiseenko V., Egorenkov V., Navatskaya A., Mitroshina G., Myasnikova E., Tsvetkova I., Lobzin Y., Sidorenko S. The emergence of hypervirulent blaNDM-1-positive Klebsiella pneumoniae sequence type 395 in an oncology hospital. Infect. Genet. Evol., 2020, vol. 85: 104527. doi: 10.1016/j.meegid.2020.104527
- Lev A.I., Astashkin E.I., Kislichkina A.A., Solovieva E.V., Kombarova T.I., Korobova O.V., Ershova O.N., Alexandrova I.A., Malikov V.E., Bogun A.G., Borzilov A.I., Volozhantsev N.V., Svetoch E.A., Fursova N.K. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012–2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog. Glob. Health., 2018, vol. 112, no. 3, pp. 142–151. doi: 10.1080/20477724.2018.1460949
- Liu C., Du P., Xiao N., Ji F, Russo T.A., Guo J. Hypervirulent Klebsiella pneumoniae is emerging as an increasingly prevalent K. pneumoniae pathotype responsible for nosocomial and healthcare-associated infections in Beijing, China. Virulence, 2020, vol. 11, no. 1, pp. 1215–1224. doi: 10.1080/21505594.2020.1809322
- Lombardi F., Gaia P., Valaperta R., Cornetta M., Tejada M.R., Di Girolamo L., Moroni A., Ramundo F., Colombo A., Valisi M., Costa E. Emergence of carbapenem-resistant Klebsiella pneumoniae: progressive spread and four-year period of observation in a cardiac surgery division. Biomed. Res. Int., 2015, vol. 2015: 871947. doi: 10.1155/2015/871947
- Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T., Monnet D.L. Multidrugresistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, vol. 18, pp. 268–281. doi: 10.1111/j.1469-0691.2011.03570.x
- Martin R.M., Bachman M.A. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol., 2018, vol. 8, no. 4. doi: 10.3389/fcimb.2018.00004
- Meacham K.J., Zhang L., Foxman B., Bauer R.J., Marrs C.F. Evaluation of genotyping large numbers of Escherichia coli isolates by enterobacterial repetitive intergenic consensus-PCR. J. Clin. Microbiol., 2003, vol. 41, no. 11, pp. 5224–5226. doi: 10.1128/JCM.41.11.5224-5226.2003
- Navon-Venezia S., Kondratyeva K., Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev., 2017, vol. 41, no. 3, pp. 252–275. doi: 10.1093/femsre/fux013
- Pendleton J.N., Gorman S.P., Gilmore B.F. Clinical relevance of the ESKAPE pathogens. Expert. Rev. Anti Infect. Ther., 2013, vol. 11, no. 3, pp. 297–308. doi: 10.1586/eri.13.12
- Pierce G., Resch C., Mourin M., Dibrov P., Dibrov E., Ravandi A. Bacteria and the growing threat of multidrug resistance for invasive cardiac interventions. Rev. Cardiovasc. Med., 2022, vol. 23, no. 1: 15. doi: 10.31083/j.rcm2301015
- Podschun R., Ullmann U. Klebsiella spp as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev., 1998, vol. 11, no. 4, pp. 589–603. doi: 10.1128/CMR.11.4.589
- Poerio N., Olimpieri T., Henrici De Angelis L., De Santis F., Thaller M.C., D’Andrea M.M., Fraziano M. Fighting MDR-Klebsiella pneumoniae infections by a combined host- and pathogen-directed therapeutic approach. Front. Immunol., 2022, vol. 13: 835417. doi: 10.3389/fimmu.2022.835417
- Purighalla S., Esakimuthu S., Reddy M., Varghese G.K., Richard V.S., Sambandamurthy V.K. Discriminatory power of three typing techniques in determining relatedness of nosocomial Klebsiella pneumoniae isolates from a tertiary hospital in India. Indian. J.Med. Microbiol., 2017, vol. 35, no. 3, pp. 361–368. doi: 10.4103/ijmm.IJMM_16_308
- Qin Ou, Wenfang Li, Bei Li, Chunfang Yu. Prevalence of carbapenem-resistant Klebsiella pneumoniae (CRKP) and the distribution of Class 1 Integron in their strains isolated from a hospital in Central China. Chin. Med. Sci. J., 2017, vol. 32, no. 2, pp. 107–112. doi: 10.24920/J1001-9294.2017.018
- Russo T.A., Marr C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev., 2019, vol. 32, no 3, pp. e00001–e000019. doi: 10.1128/CMR.00001-19
- Russo T.A., Olson R., Fang C.T., Stoesser N., Miller M., MacDonald U., Hutson A., Barker J.H., La Hoz R.M., Johnson J.R. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J. Clin. Microbiol., 2018, vol. 56, no. 9. doi: 10.1128/JCM.00776-18
- Versalovic J., Koeuth T., Lupski J.R. Distribution of repetitive DNA sequences in Eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res., 1991, vol. 19, pp. 6823–6831. doi: 10.1093/nar/19.24.6823
- Wang Q., Li B., Tsang A.K., Yi Y., Woo P.C., Liu C.H. Genotypic analysis of Klebsiella pneumoniae isolates in a Beijing Hospital reveals high genetic diversity and clonal population structure of drug-resistant isolates. PLoS One, 2013, vol. 8, no. 2: e57091. doi: 10.1371/journal.pone.0057091
- Yeh K.M., Kurup A., Siu L.K., Koh Y.L., Fung C.P., Lin J.C., Chen T.L., Chang F.Y., Koh T.H. Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J. Clin. Microbiol., 2007, vol. 45, no. 2, pp. 466–471. doi: 10.1128/JCM.01150-06
Дополнительные файлы
