Microbiological and molecular genetic characteristics of Klebsiella pneumoniae isolates, extracted under conditions of cardiac surgery hospital
- 作者: Kuznetsova M.V.1,2, Sergevnin V.I.2, Mikhailovskaya V.S.1, Kudryavtseva L.G.3, Pegushina О.G.3
-
隶属关系:
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences
- Perm State Medical University named after academician E.A. Wagner
- Cardiovascular Surgery Federal Center named after S.G. Sukhanov Ministry of Health of the Russian Federation
- 期: 卷 14, 编号 1 (2024)
- 页面: 103-114
- 栏目: ORIGINAL ARTICLES
- URL: https://ogarev-online.ru/2220-7619/article/view/256771
- DOI: https://doi.org/10.15789/2220-7619-MAM-15631
- ID: 256771
如何引用文章
全文:
详细
Klebsiella pneumoniae is one of the main causative agents of healthcare-associated infections (HAI) worldwide. The study was aimed at molecular characterization of beta-lactam antibiotic resistance in K. pneumoniae isolated in the cardiac surgery hospital, identify hypervirulent isolates and assess isolate genetic relatedness. K. pneumoniae isolated from the clinical material of patients (n = 50) at cardiac surgery departments as well as anesthesiology and reanimation department treated at the cardiovascular surgery hospital in Perm from July 2021 to December 2022 were analyzed. Bacteriological studies were performed on an automatic analyzer WalkAway-96Plus (Beckman Coulter, USA). The sensitivity to thirteen antimicrobials, production of extended-spectrum beta-lactamases (ESBL) and multidrug resistance (MDR) phenotype were assessed. The string test was used to screen hypermucoviscous K. pneumoniae. Isolate relatedness (ERIC-PCR), presence of beta-lactamase genes (blaTEM, blaCTX-M, blaSHV, blaOXA, blaKPC, blaVIM-2, blaIMP-1, blaNDM-1), as well as genes associated with hypervirulence (prmpA, iucA, peg-344, wzyK2, magA) were analyzed by PCR. Amplifications were performed in a DNA Engine Dyad Thermal Cycler (Bio-Rad, USA). Gel documentation system Gel-Doc XR (Bio-Rad, USA) was used for band visualization and data documentation. According to the study results, it was found that carbapenem-resistant isolates accounted for almost 76% of all isolates, the ESBL-phenotype had 90%, and MDR-phenotype — 88% of studied isolates. According to the string test results, 8% of K. pneumoniae isolates had a hypermucoviscous phenotype. As for genes associated with hypervirulence, it was shown that the iucA gene was the most common, amplified in 54% of isolates, prmpA was detected in 38% of isolates, 48% of isolates had wzyK2 or magA genes encoding capsular type K1/K2. Almost a third of K. pneumoniae samples contained a combination of the rmpA and iucA genes, and they were isolated more often in the group of patients with active infection. Only carbapenem-sensitive microorganisms had hypermucoviscous phenotype, K1 capsular type, and a combination of prmpA, iucA, peg-344 genes, whereas the K2 capsular type was most common among carbapenem-resistant K. pneumoniae. Based on molecular genetic typing, it was found that 24% of K. pneumoniae isolates were assigned to four genome groups of identical cultures, 76% of the isolates had individual profiles. Closely related isolates were found among patients from different departments that indicates a potential pathogen circulation in the closed circuit “surgery department–department of anesthesiology” and “reanimation–surgery department”.
作者简介
M. Kuznetsova
Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences; Perm State Medical University named after academician E.A. Wagner
编辑信件的主要联系方式.
Email: mar@iegm.ru
DSc (Medicine), Leading Researcher, Laboratory of Molecular Biotechnology
俄罗斯联邦, Perm; PermV. Sergevnin
Perm State Medical University named after academician E.A. Wagner
Email: mar@iegm.ru
DSc (Medicine), Professor, Department of Epidemiology and Hygiene
俄罗斯联邦, PermV. Mikhailovskaya
Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences
Email: mar@iegm.ru
Bachelor, Engineer, Laboratory of Molecular Biotechnology
俄罗斯联邦, PermL. Kudryavtseva
Cardiovascular Surgery Federal Center named after S.G. Sukhanov Ministry of Health of the Russian Federation
Email: mar@iegm.ru
PhD (Medicine), Head of the Epidemiological Department
俄罗斯联邦, PermО. Pegushina
Cardiovascular Surgery Federal Center named after S.G. Sukhanov Ministry of Health of the Russian Federation
Email: mar@iegm.ru
Bacteriologist
俄罗斯联邦, Perm参考
- Агеевец В.A., Агеевец И.В., Сидоренко С.В. Конвергенция множественной резистентности и гипервирулентности у Klebsiella pneumoniae // Инфекция и иммунитет. 2022. Т. 12, № 3. C. 450–460. [Ageevets V.A., Ageevets I.V., Sidorenko S.V. Convergence of multiple resistance and hypervirulence in Klebsiella pneumoniae. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 450–460. (In Russ.)] doi: 10.15789/2220-7619-COM-1825
- Алексеева А.Е., Бруснигина Н.Ф., Гординская Н.А. Молекулярно-генетическая характеристика карбапенем-устойчивого штамма Klebsiella pneumoniae KP254 как представителя эволюционной ветки высоковирулентных штаммов // Инфекция и иммунитет. 2021. Т. 11, № 3. C. 506–516. [Alekseeva A.E., Brusnigina N.F., Gordinskaya N.A. Molecular genetic characteristics of the carbapenem-resistant Klebsiella pneumoniae KP254 strain as a representative of the highly virulent strain evolutionary branch. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 3, pp. 506–516. (In Russ.)] doi: 10.15789/2220-7619-MGC-1480
- Егорова С.А., Кафтырева Л.А., Липская Л.В., Коноваленко И.Б., Пясетская М.Ф., Курчикова Т.С., Ведерникова Н.Б., Морозова О.Т., Смирнова М.В., Попенко Л.Н., Любушкина М.И., Савочкина Ю.А., Макарова М.А., Сужаева Л.В., Останкова Ю.В., Иванова М.Н., Павелкович А.М., Наабер П., Сепп Э., Кыльялг С., Мицюлявичене И., Балоде А. Штаммы энтеробактерий, продуцирующие бета-лактамазы расширенного спектра и металло-β-лактамазу ndm-1, выделенные в стационарах в странах Балтийского региона // Инфекция и иммунитет. 2013. Т. 3, № 1. С. 29–36. [Egorova S.A., Kaftyreva L.A., Lipskaya L.V., Konovalenko I.B., Pyasetskaya M.F., Kurchikova T.S., Vedernikova N.B., Morozova O.T., Smirnova M.V., Popenko L.N., Lyubushkina M.I., Savochkina Yu.A., Makarova M.A., Suzhaeva L.V., Ostankova Yu.V., Ivanova M.N., Pavelkovich A.M., Naaber P., Sepp E., Kyl’yalg S., Mitsyulyavichene I., Balode A. Enterobacteriacae, producing ESBLs and metallo-β-lactamase NDM-1, isolated in hospitals of Baltic region countries. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2013, vol. 3, no. 1, pp. 29–36. (In Russ.)] doi: 10.15789/2220-7619-2013-1-29-36
- Лазарева И.В., Агеевец В.А., Ершова Т.А., Зуева Л.П., Гончаров А.Е., Дарьина М.Г., Светличная Ю.С., Усков А.Н., Сидоренко С.В. Распространение и антибактериальная резистентность грамотрицательных бактерий, продуцентов карбапенемаз, в Санкт-Петербурге и некоторых других регионах Российской Федерации // Антибиотики и химиотерапия. 2000. Т. 61. С. 11–12. [Lazareva I.V., Ageevets V.A., Ershova T.A., Zueva L.P., Goncharov A.E., Darina M.G., Svetlichnaya Yu.S., Uskov A.N., Sidorenko S.V. Distribution and antibacterial resistance of gram-negative bacteria, producers of carbapenemases, in St. Petersburg and some other regions of the Russian Federation. Antibiotiki i khimioterapia = Antibiotics and Chemotherapy, 2000, vol. 61, pp. 11–12. (In Russ.)]
- Кузина Е.С., Асташкин Е.И., Лев А.И., Агеева Е.Н., Карцев Н.Н., Светоч Э.А., Фурсова Н.К. Интегроны классов 1 и 2 в госпитальных штаммах грамотрицательных бактерий, выделенных в Москве и регионах Российской Федерации // Молекулярная генетика, микробиология и вирусология. 2019. Т. 37, № 1. С. 17–24. [Kuzina E.S., Astashkin E.I., Lev A.I., Ageeva E.N., Kartsev N.N., Svetoch E.A., Fursova N.K. Class 1 and class 2 integrons in hospital strains of gram-negative bacteria isolated in Moscow and other regions of the Russian Federation. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology, 2019, vol. 37, no 1, pp. 17–24. (In Russ.)] doi: 10.17116/molgen20193701117
- Семенова Д.Р., Николаева И.В., Фиалкина С.В., Хаертынов Х.С., Анохин В.А., Валиуллина И.Р. Частота колонизации «гипервирулентными» штаммами Klebsiella pneumoniae новорожденных и грудных детей с внебольничной и нозокомиальной клебсиеллезной инфекцией // Российский вестник перинатологии и педиатрии. 2020. Т. 65, № 5. С. 158–163. [Semenova D.R., Nikolaeva I.V., Fialkina S.V., Khaertynov K.S., Anohin V.A., Valiullina I.R. Frequency of colonization with “hypervirulent” Klebsiella pneumoniae strains of newborns and infants with community-acquired and nosocomial klebsiella infection. Rossiyskiy Vestnik Perinatologii i Pediatrii = Russian Bulletin of Perinatology and Pediatrics, 2020, vol. 65, no. 5, pp. 158–163. (In Russ.)] doi: 10.21508/1027-4065-2020-65-5-158-163
- Сергевнин В.И., Кудрявцева Л.Г., Пегушина О.Г. Частота выявления и антибиотикорезистентность возбудителей гнойно-септических инфекций // Эпидемиология и вакцинопрофилактика. 2022. Т. 21, № 1. С. 74–80. [Sergevnin V.I., Kudryavtseva L.G., Pegyshina O.G. Rate of detection and antibiotic resistance pathogens of purulent-septic infections in cardiac surgery patients. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccine Prevention, 2022, vol. 21, no. 1, pp. 74–80. (In Russ.)] doi: 10.31631/2073-3046-2022-21-1-74-80
- Чеботарь И.В., Бочарова Ю.А., Подопригора И.В., Шагин Д.А. Почему Klebsiella pneumoniae становится лидирующим оппортунистическим патогеном // Клиническая микробиология и антимикробная химиотерапия. 2020. Т. 22, № 1. С. 4–19. [Chebotar I.V., Bocharova Yu.A., Podoprigora I.V., Shagin D.A. The reasons why Klebsiella pneumoniae becomes a leading opportunistic pathogen. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2020, vol. 22, no. 1, pp. 4–19. (In Russ.)] doi: 10.36488/cmac.2020.1.4-19
- Bhatt P.J., Ali M., Rana M., Patel G., Sullivan T., Murphy J., Pinney S., Anyanwu A., Huprikar S., Taimur S. Infections due to multidrug-resistant organisms following heart transplantation: epidemiology, microbiology, and outcomes. Transpl. Infect. Dis., 2020, vol. 22, no. 1: e13215. doi: 10.1111/tid.13215
- Gonçalves Barbosa L.C., Silva E Sousa J.A., Bordoni G.P., Barbosa G.O., Carneiro L.C. Elevated mortality risk from CRKp associated with comorbidities: systematic review and meta-analysis. Antibiotics (Basel)., 2022, vol. 11, no. 7: 874. doi: 10.3390/antibiotics11070874
- Chang D., Sharma L., Dela Cruz C.S., Zhang D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front. Microbiol., 2021, vol. 12: 750662. doi: 10.3389/fmicb.2021.750662
- Del Puente F., Giacobbe D.R., Salsano A., Maraolo A.E., Ong D.S.Y., Yusuf E., Tutino S., Marchese A., Santini F., Viscoli C. Epidemiology and outcome of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-KP) infections in cardiac surgery patients: a brief narrative review. J. Chemother., 2019, vol. 31, no. 7–8, pp. 359–366. doi: 10.1080/1120009X.2019.1685794
- Edelstein M., Pimkin M., Palagin I., Edelstein I., Stratchounski L. Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob. Agents Chemother., 2003, vol. 47, no. 12, pp. 3724–3732. doi: 10.1128/aac.47.12.3724-3732.2003
- Fang C.T., Chuang Y.P., Shun C.T., Chang S.C., Wang J.T. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J. Exp. Med., 2004, vol. 199, no. 5, pp. 697–705. doi: 10.1084/jem.20030857
- Galvão L.M., Oliveira A.P.R., Ibanês A.S., Monteiro J., Inoue F., Dantas D.C., Sanchez F., Santos D.W., Abboud C.S. Fatal case of donor-derived colistin-resistant carbapenemase-producing Klebsiella pneumoniae transmission in cardiac transplantation. Braz. J. Infect. Dis., 2018, vol. 22. no. 3, pp. 235–238. doi: 10.1016/j.bjid.2018.04.005
- Ghanizadeh A., Najafizade M., Rashki S., Marzhoseyni Z., Motallebi M. Genetic diversity, antimicrobial resistance pattern, and biofilm formation in Klebsiella pneumoniae Isolated from patients with coronavirus disease 2019 (COVID-19) and ventilator-associated pneumonia. Biomed. Res. Int., 2021, vol. 2021: 2347872. doi: 10.1155/2021/2347872
- Gorrie C.L., Mirčeta M., Wick R.R., Judd L.M., Lam M.M.C., Gomi R., Abbott I.J., Thomson N.R., Strugnell R.A., Pratt N.F., Garlick J.S., Watson K.M., Hunter P.C., Pilcher D.V., McGloughlin S.A., Spelman D.W., Wyres K.L., Jenney A.W.J., Holt K.E. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat. Commun., 2022, vol. 13, no. 1: 3017. doi: 10.1038/s41467-022-30717-6
- Grigoryev E.V., Shukevich D.L., Matveeva V.G., Kornekyuk R.A. Immunosuppression as a component of multiple organ dysfunction syndrome followed cardiac surgery. Complex Issues of Cardiovascular Diseases, 2018, vol. 7 no. 4, pp. 84–91. doi: 10.17802/2306-1278-2018-7-4-84-91
- Gu D., Dong N., Zheng Z., Lin D., Huang M., Wang L., Chan E.W., Shu L., Yu J., Zhang R., Chen S. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect. Dis., 2018, vol. 18, no. 1, pp. 37–46. doi: 10.1016/S1473-3099(17)30489-9
- Huey B., Hall J., Hypervariable DNA fingerprinting in Escherichia coli: minisatellite probe from bacteriophage M13. J. Bacteriol., 1989, vol. 171, no. 5, pp. 2528–2532. doi: 10.1128/jb.171.5.2528-2532.1989
- Kundu J., Kansal S., Rathore S., Kaundal M., Angrup A., Biswal M., Walia K., Ray P., Evaluation of ERIC-PCR and MALDI-TOF as typing tools for multidrug resistant Klebsiella pneumoniae clinical isolates from a tertiary care center in India. PLoS One, 2022, vol. 17, no. 11: e0271652. doi: 10.1371/journal.pone.0271652
- Lazareva I., Ageevets V., Sopova J., Lebedeva M., Starkova P., Likholetova D., Gostev V., Moiseenko V., Egorenkov V., Navatskaya A., Mitroshina G., Myasnikova E., Tsvetkova I., Lobzin Y., Sidorenko S. The emergence of hypervirulent blaNDM-1-positive Klebsiella pneumoniae sequence type 395 in an oncology hospital. Infect. Genet. Evol., 2020, vol. 85: 104527. doi: 10.1016/j.meegid.2020.104527
- Lev A.I., Astashkin E.I., Kislichkina A.A., Solovieva E.V., Kombarova T.I., Korobova O.V., Ershova O.N., Alexandrova I.A., Malikov V.E., Bogun A.G., Borzilov A.I., Volozhantsev N.V., Svetoch E.A., Fursova N.K. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012–2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog. Glob. Health., 2018, vol. 112, no. 3, pp. 142–151. doi: 10.1080/20477724.2018.1460949
- Liu C., Du P., Xiao N., Ji F, Russo T.A., Guo J. Hypervirulent Klebsiella pneumoniae is emerging as an increasingly prevalent K. pneumoniae pathotype responsible for nosocomial and healthcare-associated infections in Beijing, China. Virulence, 2020, vol. 11, no. 1, pp. 1215–1224. doi: 10.1080/21505594.2020.1809322
- Lombardi F., Gaia P., Valaperta R., Cornetta M., Tejada M.R., Di Girolamo L., Moroni A., Ramundo F., Colombo A., Valisi M., Costa E. Emergence of carbapenem-resistant Klebsiella pneumoniae: progressive spread and four-year period of observation in a cardiac surgery division. Biomed. Res. Int., 2015, vol. 2015: 871947. doi: 10.1155/2015/871947
- Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T., Monnet D.L. Multidrugresistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, vol. 18, pp. 268–281. doi: 10.1111/j.1469-0691.2011.03570.x
- Martin R.M., Bachman M.A. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol., 2018, vol. 8, no. 4. doi: 10.3389/fcimb.2018.00004
- Meacham K.J., Zhang L., Foxman B., Bauer R.J., Marrs C.F. Evaluation of genotyping large numbers of Escherichia coli isolates by enterobacterial repetitive intergenic consensus-PCR. J. Clin. Microbiol., 2003, vol. 41, no. 11, pp. 5224–5226. doi: 10.1128/JCM.41.11.5224-5226.2003
- Navon-Venezia S., Kondratyeva K., Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev., 2017, vol. 41, no. 3, pp. 252–275. doi: 10.1093/femsre/fux013
- Pendleton J.N., Gorman S.P., Gilmore B.F. Clinical relevance of the ESKAPE pathogens. Expert. Rev. Anti Infect. Ther., 2013, vol. 11, no. 3, pp. 297–308. doi: 10.1586/eri.13.12
- Pierce G., Resch C., Mourin M., Dibrov P., Dibrov E., Ravandi A. Bacteria and the growing threat of multidrug resistance for invasive cardiac interventions. Rev. Cardiovasc. Med., 2022, vol. 23, no. 1: 15. doi: 10.31083/j.rcm2301015
- Podschun R., Ullmann U. Klebsiella spp as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev., 1998, vol. 11, no. 4, pp. 589–603. doi: 10.1128/CMR.11.4.589
- Poerio N., Olimpieri T., Henrici De Angelis L., De Santis F., Thaller M.C., D’Andrea M.M., Fraziano M. Fighting MDR-Klebsiella pneumoniae infections by a combined host- and pathogen-directed therapeutic approach. Front. Immunol., 2022, vol. 13: 835417. doi: 10.3389/fimmu.2022.835417
- Purighalla S., Esakimuthu S., Reddy M., Varghese G.K., Richard V.S., Sambandamurthy V.K. Discriminatory power of three typing techniques in determining relatedness of nosocomial Klebsiella pneumoniae isolates from a tertiary hospital in India. Indian. J.Med. Microbiol., 2017, vol. 35, no. 3, pp. 361–368. doi: 10.4103/ijmm.IJMM_16_308
- Qin Ou, Wenfang Li, Bei Li, Chunfang Yu. Prevalence of carbapenem-resistant Klebsiella pneumoniae (CRKP) and the distribution of Class 1 Integron in their strains isolated from a hospital in Central China. Chin. Med. Sci. J., 2017, vol. 32, no. 2, pp. 107–112. doi: 10.24920/J1001-9294.2017.018
- Russo T.A., Marr C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev., 2019, vol. 32, no 3, pp. e00001–e000019. doi: 10.1128/CMR.00001-19
- Russo T.A., Olson R., Fang C.T., Stoesser N., Miller M., MacDonald U., Hutson A., Barker J.H., La Hoz R.M., Johnson J.R. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J. Clin. Microbiol., 2018, vol. 56, no. 9. doi: 10.1128/JCM.00776-18
- Versalovic J., Koeuth T., Lupski J.R. Distribution of repetitive DNA sequences in Eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res., 1991, vol. 19, pp. 6823–6831. doi: 10.1093/nar/19.24.6823
- Wang Q., Li B., Tsang A.K., Yi Y., Woo P.C., Liu C.H. Genotypic analysis of Klebsiella pneumoniae isolates in a Beijing Hospital reveals high genetic diversity and clonal population structure of drug-resistant isolates. PLoS One, 2013, vol. 8, no. 2: e57091. doi: 10.1371/journal.pone.0057091
- Yeh K.M., Kurup A., Siu L.K., Koh Y.L., Fung C.P., Lin J.C., Chen T.L., Chang F.Y., Koh T.H. Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J. Clin. Microbiol., 2007, vol. 45, no. 2, pp. 466–471. doi: 10.1128/JCM.01150-06
补充文件
