Рино- и РС-вирусы в пандемию COVID-19
- Авторы: Киселева И.В.1,2, Ксенафонтов А.Д.3
-
Учреждения:
- ФГБНУ Институт экспериментальной медицины
- ФГБОУ ВО Санкт-Петербургский государственный университет
- ФГБУ НИИ гриппа им. А.А. Смородинцева Минздрава России
- Выпуск: Том 12, № 4 (2022)
- Страницы: 624-638
- Раздел: ОБЗОРЫ
- URL: https://ogarev-online.ru/2220-7619/article/view/119042
- DOI: https://doi.org/10.15789/2220-7619-RAR-1826
- ID: 119042
Цитировать
Полный текст
Аннотация
Острые респираторные вирусные инфекции являются самыми многочисленными заболеваниями человека, с развитием которых связывают несколько сотен различных вирусов. Один из наиболее распространенных на планете респираторных патогенов — это риновирус человека, который является причиной более половины всех случаев острых респираторных вирусных инфекций; на долю сезонных коронавирусов человека приходится 10–15% простудных заболеваний; респираторно-синцитиальный (РС) вирус — наиболее частая причина госпитализации младенцев с респираторными заболеваниями; также широко распространены вирусы гриппа, аденовирусы, вирус парагриппа человека и метапневмовирусы. Считается, что вирусные простудные заболевания — это в основном самостоятельно купирующиеся, легко протекающие инфекции, которые обычно проходят в течение 8–10 дней. Однако не стоит недооценивать роль обычных сезонных респираторных вирусов в общей массе респираторных патогенов. Оказалось, что в экстраординарных условиях пандемий они ведут себя по-разному. Это было очень четко продемонстрировано в последнюю пандемию гриппа 2009 г. Если одни вирусы под гнетом агрессивного пандемического штамма сдали свои позиции, то другие, и ярким тому примером может служить риновирус, — продолжали активно бороться за существование и не только циркулировали наравне с пандемическим патогеном, но и в ряде случаев задерживали его распространение. Так происходило, например, в ряде европейских стран, где наступление пандемического вируса гриппа H1N1pdm09 было приостановлено начавшейся ежегодной осенней вспышкой риновирусной инфекции. Спустя десять лет от начала пандемии гриппа H1N1pdm09 разразилась пандемия COVID-19, вызванная новым коронавирусом SARS-CoV-2. Эта пандемия нарушила устоявшиеся эпидемиологические и патогенетические взаимосвязи. Уровень циркуляции многих респираторных патогенов значительно изменился. Например, глобальная активность гриппа уже второй год находится на гораздо более низком уровне, чем ожидалось. Во многих регионах мира сезон гриппа так и не начался. Но что интересно: риновирусы, а с ними и РС-вирус, снова проявили свою уникальную способность конкурировать с высокопатогенными и агрессивными возбудителями. При значительном сокращении циркуляции многих сезонных респираторных вирусов, именно риновирус и РС-вирус оказались наиболее часто обнаруживаемыми вирусами. В настоящем обзоре мы свели воедино основные биологические характеристики таких генетически удаленных вирусов, как риновирус, вирус гриппа А, РС-вирус и SARS-CoV-2, в попытке понять, что их объединяет и разделяет, почему так по-разному они ведут себя в экстремальных пандемических условиях и что позволяет риновирусам и РС-вирусам сосуществовать с SARS-CoV-2, который, в свою очередь, почти полностью вытеснил вирус гриппа.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Ирина Васильевна Киселева
ФГБНУ Институт экспериментальной медицины; ФГБОУ ВО Санкт-Петербургский государственный университет
Автор, ответственный за переписку.
Email: irina.v.kiseleva@mail.ru
ORCID iD: 0000-0002-3892-9873
д.б.н., профессор, зав. лабораторией общей вирусологии, профессор кафедры фундаментальных проблем медицины и медицинских технологий
Россия, 197376, Санкт-Петербург, ул. академика Павлова, 12; Санкт-ПетербургАндрей Дмитриевич Ксенафонтов
ФГБУ НИИ гриппа им. А.А. Смородинцева Минздрава России
Email: ksenandrey@yandex.ru
ORCID iD: 0000-0002-4532-6210
аспирант
Россия, Санкт-ПетербургСписок литературы
- Aboubakr H.A., Sharafeldin T.A., Goyal S.M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: a review. Transbound. Emerg. Dis., 2021, vol. 68, no. 2, pp. 296–312. doi: 10.1111/tbed.13707
- Anderson R.M., Fraser C., Ghani A.C., Donnelly C.A., Riley S., Ferguson N.M., Leung G.M., Lam T.H., Hedley A.J. Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2004, vol. 359, no. 1447, pp. 1091–1105. doi: 10.1098/rstb.2004.1490
- Ånestad G., Nordbø S.A. Does rhinovirus inhibit influenza A(H1N1) pandemic? Tidsskr. Nor. Laegeforen., 2010, vol. 130, no. 19, pp. 1932–1934. doi: 10.4045/tidsskr.10.0660
- Ånestad G., Nordbø S.A. Virus interference. Did rhinoviruses activity hamper the progress of the 2009 influenza A (H1N1) pandemic in Norway? Med. Hypotheses, 2011, vol. 77, no. 6, pp. 1132–1134. doi: 10.1016/j.mehy.2011.09.021
- Arden K.E., Mackay I.M. Newly identified human rhinoviruses: molecular methods heat up the cold viruses. Rev. Med. Virol., 2010, vol. 20, no. 3, pp. 156–176. doi: 10.1002/rmv.644
- Barreto-Vieira D.F., da Silva M.A.N., Garcia C.C.,Miranda M.D., Matos A.D.R., Caetano B.C., Resende P.C., Motta F.C., Siqueira M.M., Girard-Dias W., Archanjo B.S., Barth O.M. Morphology and morphogenesis of SARS-CoV-2 in Vero-E6 cells. Mem. Inst. Oswaldo. Cruz., 2021, vol. 116: e200443. doi: 10.1590/0074-02760200443
- Beeching N.J., Fletcher T.E., Beadsworth M.B.J. COVID-19: testing times. BMJ, 2020, vol. 369, no. m1403, pp. 1–2. doi: 10.1136/bmj.m1403
- Berlin D.A., Gulick R.M., Martinez F.J., Severe COVID-19. N. Engl. J. Med., 2020, vol.383, no. 25, pp. 2451–2460. doi: 10.1056/NEJMcp2009575
- Breen M., Nogales A., Baker S.F., Martínez-Sobrido L. Replication-competent influenza A viruses expressing reporter genes. Viruses, 2016, vol. 8, no. 7, pp. 179. doi: 10.3390/v8070179
- Calderaro A., De Conto F., Buttrini M., Piccolo G., Montecchin S., Maccari C., Martinelli M., Di Maio A., Ferraglia F., Pinardi F., Montagna P., Arcangeletti M.C., Chezzi C. Human respiratory viruses, including SARS-CoV-2, circulating in the winter season 2019–2020 in Parma, Northern Italy. Int. J. Infect. Dis., 2020, vol. 102, pp. 79–84. doi: 10.1016/j.ijid.2020.09.1473
- Carod-Artal F.J., Neurological complications of coronavirus and COVID-19. Rev. Neurol., 2020, vol. 70, no. 9, pp. 311–322. doi: 10.33588/rn.7009.2020179
- Casalegno J.S., Ottmann M., Bouscambert-Duchamp M., Valette M., Morfin F., Lina B. Impact of the 2009 influenza A(H1N1) pandemic wave on the pattern of hibernal respiratory virus epidemics, France, 2009. Euro Surveill., 2010, vol. 15, no. 6: 19485.
- Casalegno J.S., Ottmann M., Duchamp M.B., Escuret V., Billaud G., Frobert E., Morfin F., Lina B. Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clin. Microbiol. Infect., 2010, vol. 16, no. 4, pp. 326–329. doi: 10.1111/j.14690691.2010.03167.x
- Charles C.H., Yelmene M., Luo G.X. Recent advances in rhinovirus therapeutics. Curr. Drug Targets Infect. Disord., 2004, vol. 4, no. 4, pp. 331–337. doi: 10.2174/1568005043340551
- Cheung T.K., Poon L.L. Biology of influenza a virus. Ann. N.Y. Acad. Sci., 2007, vol. 1102, pp. 1–25. doi: 10.1196/annals.1408.001
- Cimolai N. Complicating infections associated with common endemic human respiratory coronaviruses. Health Secur., 2021, vol. 19, no. 2, pp. 195–208. doi: 10.1089/hs.2020.0067
- Collins P.L., Fearns R., Graham B.S. Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease. Curr. Top Microbiol. Immunol., 2013, vol. 372, pp. 3–38. doi: 10.1007/978-3-642-38919-1_1
- Cowton V.M., McGivern D.R., Fearns R. Unravelling the complexities of respiratory syncytial virus RNA synthesis. J. Gen. Virol., 2006, vol. 87, no. 7, pp. 1805–1821. doi: 10.1099/vir.0.81786-0
- De Vlugt C., Sikora D., Pelchat M. Insight into influenza: a virus cap-snatching. Viruses, 2018, vol. 10, no. 11: 641. doi: 10.3390/v10110641
- Dee K., Goldfarb D.M., Haney J., Amat J.A.R., Herder V., Stewart M., Szemiel A.M., Baguelin M., Murcia P.R. Human rhinovirus infection blocks SARS-CoV-2 replication within the respiratory epithelium: implications for COVID-19 epidemiology. J. Infect. Dis., 2021, vol. 224, no. 1, pp. 31–38. doi: 10.1093/infdis/jiab147
- Dehbandi R., Zazouli M.A. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020, vol. 1, no. 4: e145. doi: 10.1016/s2666-5247(20)30093-8
- Dou D., Revol R., Östbye H., Wang H., Daniels R. Influenza A virus cell entry, replication, virion assembly and movement. Front Immunol., 2018, vol. 9: 1581. doi: 10.3389/fimmu.2018.01581
- Dreschers S., Dumitru C.A., Adams C., Gulbins E. The cold case: are rhinoviruses perfectly adapted pathogens? Cell Mol. Life. Sci., 2007, vol. 64, no. 2, pp. 181–191. doi: 10.1007/s00018-006-6266-5
- Drysdale S.B., Mejias A., Ramilo O. Rhinovirus — not just the common cold. J. Infect., 2017, vol. 74, no. 1, pp. 41–46. doi: 10.1016/s0163-4453(17)30190-1
- Eccles R. Understanding the symptoms of the common cold and influenza. Lancet Infect. Dis., vol. 2005, no. 5, pp. 718–725. doi: 10.1016/s1473-3099(05)70270-x
- Eslami H., Jalili M. The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). AMB Express, 2020, vol. 10, no. 92. doi: 10.1186/s13568-020-01028-0
- Fendrick A.M., Monto A.S., Nightengale B., Sarnes M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch. Intern. Med., 2003, vol. 163, no. 4, pp. 487–494. doi: 10.1001/archinte.163.4.487
- Firquet S., Beaujard S., Lobert P.E., Sané F., Caloone D., Izard D., Hober D. Survival of enveloped and non-enveloped viruses on inanimate surfaces. Microbes Environ., 2015, vol. 30, no. 2, pp. 140–144. doi: 10.1264/jsme2.ME14145
- Geller C., Varbanov M., Duval R.E. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses 2012, vol. 4, no. 11, pp. 3044–3068. doi: 10.3390/v4113044
- Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman D.W., Penzar D., Perlman S., Poon L.L.M., Samborskiy D.V., Sidorov I.A., Sola I., Ziebuhr J. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, vol. 5, no. 4, pp. 536–544. doi: 10.1038/s41564-020-0695-z
- Hall C.B., Walsh E.E., Schnabel K.C., Long C.E., McConnochie K.M., Hildreth S.W., Anderson L.J. Occurrence of groups A and B of respiratory syncytial virus over 15 years: associated epidemiologic and clinical characteristics in hospitalized and ambulatory children. J. Infect. Dis., 1990, vol. 162, no. 6, pp. 1283–1290. doi: 10.1093/infdis/162.6.1283
- Hanff T.C., Mohareb A.M., Giri J., Cohen J.B., Chirinos J.A. Thrombosis in COVID-19. Am. J. Hematol., 2020, vol. 95, no. 12, pp. 1578–1589. doi: 10.1002/ajh.25982
- Harrison A.G., Lin T., Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol., 2020, vol. 41, no. 12, pp. 1100–1115. doi: 10.1016/j.it.2020.10.004
- Hasöksüz M., Kiliç S., Saraç F. Coronaviruses and SARS-CoV-2. Turk. J. Med. Sci., 2020, vol. 50, no. SI-1, pp. 549–556. doi: 10.3906/sag-2004-127
- Hemalatha M., Kiran U., Kuncha S.K., Kopperi H., Gokulan C.G., Mohan S.V., Mishra R.K. Surveillance of SARS-CoV-2 spread using wastewater-based epidemiology: comprehensive study. Sci. Total Environ., 2021, vol. 768, pp. 144704. doi: 10.1016/ j.scitotenv.2020.144704
- Hendley J.O., Wenzel R.P., Gwaltney J.M. Jr. Transmission of rhinovirus colds by self-inoculation. N. Engl. J. Med., 1973, vol. 288, no. 26, pp. 1361–1364. doi: 10.1056/nejm197306282882601
- Henwoo A.F. Coronavirus disinfection in histopathology. J. Histotechnol., 2020, vol. 43, no. 2, pp. 102–104. doi: 10.1080/01478885.2020.1734718
- Hirose R., Ikegaya H., Naito Y., Watanabe N., Yoshida T., Bandou R., Daidoji T., Itoh Y., Nakaya T. Survival of SARS-CoV-2 and influenza virus on the human skin: Importance of hand hygiene in COVID-19. Clin. Infect. Dis., 2020: ciaa1517. doi: 10.1093/cid/ciaa1517
- Hirsh S., Hindiyeh M., Kolet L., Regev L., Sherbany H., Yaary K., Mendelson E., Mandelboim M. Epidemiological changes of respiratory syncytial virus (RSV) infections in Israel. PLoS One, 2014, vol. 9, no. 3: e90515. doi: 10.1371/journal.pone.0090515
- Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, vol. 181, no. 2, pp. 271–280.e8. doi: 10.1016/j.cell.2020.02.052
- Hrebík D., Füzik T., Gondová M., Šmerdová L., Adamopoulos A., Šedo O., Zdráhal Z., Plevka P. ICAM-1 induced rearrangements of capsid and genome prime rhinovirus 14 for activation and uncoating. Proc. Natl. Acad. Sci. USA, 2021, vol. 118, no. 19: e2024251118. doi: 10.1073/pnas.2024251118
- Hui D.S., I. Azhar E., Madani T.A., Ntoumi F., Kock R., Dar O., Ippolito G., McHugh T.D., Memish Z.A., Drosten C., Zumla A., Petersen E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, vol. 91, pp. 264–266. doi: 10.1016/j.ijid.2020.01.009
- ICTV. Virus taxonomy. Classification and nomenclature of viruses. Ninth Report of the International Committee on taxonomy of viruses; 9th ed. Eds. King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J. Academic Press: London, 2012. URL: https://www.academia.edu/8097730/Ninth_Report_of_the_International_Committee_on_Taxonomy_of_Viruses
- ICTV. Virus taxonomy: 2020 Release. URL: https://talk.ictvonline.org/taxonomy
- Jacobs S.E., Lamson D.M., St. George K., Walsh T.J. Human rhinoviruses. Clin. Microbiol. Rev., 2013, vol. 26, no. 1, pp. 135. doi: 10.1128/CMR.00077-12
- Jartti T., Jartti L., Peltola V., Waris M., Ruuskanen O. Identification of respiratory viruses in asymptomatic subjects: asymptomatic respiratory viral infections. Pediatr. Infect. Dis. J., 2008, vol. 27, no. 12, pp. 1103–1107. doi: 10.1097/INF.0b013e31817e695d
- Karron R.A., Wright P.F., Crowe J.E. Jr., Clements-Mann M.L., Thompson J., Makhene M., Casey R., Murphy B.R. Evaluation of two live, cold-passaged, temperature-sensitive respiratory syncytial virus vaccines in chimpanzees and in human adults, infants, and children. J. Infect. Dis., 1997, vol. 176, no. 6, pp. 1428–1436. doi: 10.1086/514138
- Kim D., Quinn J., Pinsky B., Shah N.H., Brown I. Rates of co-nfection between SARS-CoV-2 and other respiratory pathogens. JAMA, 2020, vol. 323, no. 20, pp. 2085–2086. doi: 10.1001/jama.2020.6266
- Kiseleva I., Grigorieva E., Larionova N., Al Farroukh M., Rudenko L. COVID-19 in light of seasonal respiratory infections. Biology (Basel), 2020, vol. 9, no. 9: 240. doi: 10.3390/biology9090240
- Kiseleva I., Larionova N. Influenza: a century of research. Eds. Kiseleva I., Larionova N. Bentham Science Publishers Ltd.: Sharjah, UAE, 2021, 202 p. doi: 10.2174/97816810884401210101
- Kiseleva I., Larionova N., Kuznetsov V., Rudenko L. Phenotypic characteristics of novel swine-origin influenza A/California/07/2009 (H1N1) virus. Influenza Other Respir. Viruses, 2010, vol. 4, no. 1, pp. 1–5. doi: 10.1111/j.1750-2659.2009.00118.x
- Kiseleva I., Rekstin A., Al Farroukh M., Bazhenova E., Katelnikova A., Puchkova L., Rudenko L. Non-mouse-adapted H1N1pdm09 virus as a model for influenza research. Viruses, 2020, vol. 12, no. 6: 590. doi: 10.3390/v12060590.
- Kiseleva I., Su Q., Toner T.J., Szymkowiak C., Kwan W.S., Rudenko L., Shaw A.R., Youil R. Cell-based assay for the determination of temperature sensitive and cold adapted phenotypes of influenza viruses. J. Virol. Methods, 2004, vol. 116, no. 1, pp. 71–78. doi: 10.1016/j.jviromet.2003.10.012
- Koonin E.V., Gorbalenya A.E., Chumakov K.M. Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases. FEBS Lett., 1989, vol. 252, no. 1–2, pp. 42–46. doi: 10.1016/0014-5793(89)80886-5
- Kormuth K.A., Lin K., Qian Z., Myerburg M.M., Marr L.C., Lakdawala S.S., Environmental persistence of influenza viruses is dependent upon virus type and host origin. mSphere, 2019, vol. 4, no. 4: e00552-19. doi: 10.1128/mSphere.00552-19
- Kramer A., Schwebke I., Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis., 2006, vol. 6: 130. doi: 10.1186/1471-2334-6-130
- Krammer F., Smith G.J.D., Fouchier R.A.M., Peiris M., Kedzierska K., Doherty P.C., Palese P., Shaw M.L., Treanor J., Webster R.G., García-Sastre A. Influenza. Nat. Rev. Dis. Primers, 2018, vol. 4, no. 1: 3. doi: 10.1038/s41572-018-0002-y
- Kumari P., Rothan H.A., Natekar J.P., Stone S., Pathak H., Strate P.G., Arora K., Brinton M.A., Kumar M. Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice. Viruses, 2021, vol. 13, no. 1: 132. doi: 10.3390/v13010132
- Lamarre A., Talbot P.J. Effect of pH and temperature on the infectivity of human coronavirus 229E. Can J. Microbiol., 1989, vol. 35, no. 10, pp. 972–974. doi: 10.1139/m89-160
- Laporte M., Raeymaekers V., Van Berwaer R., Vandeput J., Marchand-Casas I., Thibaut H.J., Van Looveren D., Martens K., Hoffmann M., Maes P., Pöhlmann S., Naesens L., Stevaert A. The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways. PLoS Pathog., 2021, vol. 17, no. 4: e1009500. doi: 10.1371/journal.ppat.1009500
- Laurie K.L., Rockman S. Which influenza viruses will emerge following the SARS-CoV-2 pandemic? Influenza Other Respir. Viruses, 2021, vol. 15, no. 5, pp. 573–576. doi: 10.1111/irv.12866
- Leotte J., Trombetta H., Faggion H.Z., Almeida B.M., Nogueira M.B., Vidal L.R., Raboni S.M. Impact and seasonality of human rhinovirus infection in hospitalized patients for two consecutive years. J. Pediatr. (Rio J.), 2017, vol. 93, no. 3, pp. 294–300. doi: 10.1016/j.jped.2016.07.004
- Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W.J., Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, vol. 395, no. 10224, pp. 565–574. doi: 10.1016/s0140-6736(20)30251-8
- Mahl M.C., Sadler C. Virus survival on inanimate surfaces. Can. J. Microbiol., 1975, vol. 21, no. 6, pp. 819–823. doi: 10.1139/m75-121
- Malik Y.A. Properties of coronavirus and SARS-CoV-2. Malays J. Pathol., 2020, vol. 42, no. 1, pp. 3–11.
- Mandal A. COVID-19 pandemic is “one big wave” says WHO. 2020. URL: https://www.news-medical.net/news/20200730/COVID-19-pandemic-is-one-big-wave-says-WHO.aspx
- McIntyre C.L., Knowles N.J., Simmonds P. Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J. Gen. Virol., 2013, vol. 94, no. 8, pp. 1791–1806. doi: 10.1099/vir.0.053686-0
- Mohan S.V., Hemalatha M., Kopperi H., Ranjith I., Kumar A.K. SARS-CoV-2 in environmental perspective: occurrence, persistence, surveillance, inactivation and challenges. Chem. Eng. J., 2021, vol. 405, pp. 126893. doi: 10.1016/j.cej.2020.126893
- Murray, P.R. Baron, E. Jorgenson, J.H. Pfaller, M. Yolken, R.H. Manual of clinical microbiology. Ed. Murray P.R.; 9th ed. USA: ASM Press, 2003, vol. 1, 1482 p.
- Nickbakhsh S., Ho A., Marques D.F.P., McMenamin J., Gunson R.N., Murcia P.R. Epidemiology of seasonal coronaviruses: Establishing the context for COVID-19 emergence. J. Infect. Dis., 2020, vol. 222, no. 1, pp. 17–25. doi: 10.1093/infdis/jiaa185
- Nickbakhsh S., Mair C., Matthews L., Reeve R., Johnson P.C.D., Thorburn F., von Wissmann B., Reynolds A., McMenamin J., Gunson R.N., Murcia P.R. Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl. Acad. Sci. USA, 2019, vol. 116, no. 52, pp. 27142–27150. doi: 10.1073/pnas.1911083116
- Nowak M.D., Sordillo E. M., Gitman M.R., PanizMondolfi A.E. Co-infection in SARS-CoV-2 infected patients: where are influenza virus and rhinovirus/enterovirus? J. Med. Virol., 2020, vol. 92, no. 10, pp. 1699–1700. doi: 10.1002/jmv.25953
- Oliveira A.C., Ishimaru D., Gonçalves R.B., Smith T.J., Mason P., Sá-Carvalho D., Silva J.L. Low temperature and pressure stability of picornaviruses: implications for virus uncoating. Biophys. J., 1999, vol. 76, no. 3, pp. 1270–1279. doi: 10.1016/S0006-3495(99)77290-5
- Ortega H., Nickle D., Carter L. Rhinovirus and asthma: challenges and opportunities. Rev. Med. Virol., 2020, vol. 31, no. 4: e2193. doi: 10.1002/rmv.2193
- Otter J.A., Donskey C., Yezli S., Douthwaite S., Goldenberg S.D., Weber D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J. Hosp. Infect., 2016, vol. 92, no. 3, pp. 235–250. doi: 10.1016/j.jhin.2015.08.027.
- PAHO. Flu Net home page. 2010–2021. URL: http://ais.paho.org/phip/viz/ed_flu.asp
- Papadopoulos N.G., Bates P.J., Bardin P.G., Papi A., Leir S.H., Fraenkel D.J., Meyer J., Lackie P.M., Sanderson G., Holgate S.T., Johnston S.L. Rhinoviruses infect the lower airways. J. Infect. Dis., 2000, vol. 181, no. 6, pp. 1875–1884. doi: 10.1086/315513
- Papadopoulos N.G., Sanderson G., Hunter J., Johnston S.L. Rhinoviruses replicate effectively at lower airway temperatures. J. Med. Virol., 1999, vol. 58, no. 1, pp. 100–104. doi: 10.1002/(sici)1096-9071(199905)58:1<100::aid-jmv16>3.0.co2-d
- Pappas D.E., Hendley J.O. The common cold and decongestant therapy. Pediatr. Rev., 2011, vol. 32, no. 2, pp. 47–54. doi: 10.1542/pir.32-2-47
- Pappas D.E., Hendley J.O., Hayden F.G., Winther B. Symptom profile of common colds in school-aged children. Pediatr. Infect. Dis. J., 2008, vol. 27, no. 1, pp. 8–11. doi: 10.1097/INF.0b013e31814847d9
- Pérez L., Carrasco L. Entry of poliovirus into cells does not require a low-pH step. J. Virol., 1993, vol. 67, no. 8, pp. 4543–4548. doi: 10.1128/jvi.67.8.4543-4548.1993
- Poole S., Brendish N.J., Clark T.W. SARS-CoV-2 has displaced other seasonal respiratory viruses: results from a prospective cohort study. J. Infect., 2020, vol. 81, no. 6, pp. 966–972. doi: 10.1016/j.jinf.2020.11.010
- Roebuck M.O. Rhinoviruses in Britain 1963–1973. J. Hyg., 1976, vol. 76, no. 1, pp. 137–146. doi: 10.1017/s0022172400055029
- Rose E.B., WheatleyA., Langley G., Gerber S., Haynes A. Respiratory syncytial virus seasonality — United States, 2014–2017. MMWR Morb. Mortal Wkly. Rep., 2018, vol. 67, no. 2, pp. 71–76. doi: 10.15585/mmwr.mm6702a4
- Sagripanti J.L., Lytle C.D. Inactivation of influenza virus by solar radiation. Photochem. Photobiol., 2007, vol. 83, no. 5, pp. 1278–1282. doi: 10.1111/j.1751-1097.2007.00177.x
- Sajjan U., Wang Q., Zhao Y., Gruenert D.C., Hershenson M.B. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am. J. Respir. Crit. Care Med., 2008, vol. 178, no. 12, pp. 1271–1281. doi: 10.1164/rccm.200801-136OC
- Sakudo A., Onodera T., Tanaka Y. Inactivation of viruses. In: Sterilization and disinfection by plasma: sterilization mechanisms, biological and medical applications (medical devices and equipment); 1st ed. Eds. Sakudo A., Shintani H. N.Y.: Nova Science Publishers: United States, 2010, pp. 49–60.
- Savolainen C., Blomqvist S., Hovi T. Human rhinoviruses. Paediatr. Respir. Rev., 2003, vol. 4, no. 2, pp. 91–98. doi: 10.1016/s1526-0542(03)00030-7
- Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, vol. 117, no. 21, pp. 11727–11734. doi: 10.1073/pnas.2003138117
- Sow F.B., Gallup J.M., Krishnan S., Patera A.C., Suzich J., Ackermann M.R. Respiratory syncytial virus infection is associated with an altered innate immunity and a heightened pro-inflammatory response in the lungs of preterm lambs. Respir. Res., 2011, vol. 12, no. 1, pp. 106. doi: 10.1186/1465-9921-12-106
- Stobart C.C., Nosek J.M., Moore M.L. Rhinovirus biology, antigenic diversity, and advancements in the design of a human rhinovirus vaccine. Front. Microbiol., 2017, vol. 8: 2412. doi: 10.3389/fmicb.2017.02412
- Strauss J.H., Strauss E.G. Minus-strand RNA viruses. In: Viruses and human disease; 2nd ed. Eds. Strauss J.H., Strauss E.G. London: Academic Press, 2008, pp. 137–191. doi: 10.1016/B978-0-12-373741-0.50007-6
- Strauss J.H., Strauss E.G. Overview of viruses and virus infection. In: Viruses and human disease; 2nd ed. Eds. Strauss J.H., Strauss E.G. London: Academic Press, 2008, pp. 1–33. doi: 10.1016/B978-0-12-373741-0.50004-0
- Strauss J.H., Strauss E.G. Plus-strand RNA viruses. In Viruses and human disease; 2nd ed. Eds. Strauss J.H., Strauss E.G. London: Academic Press, 2008, pp. 63–136. doi: 10.1016/B978-0-12-373741-0.50006-4
- To K.K.W., Yip C.C.Y., Yuen K.Y. Rhinovirus — from bench to bedside. J. Formos. Med. Assoc., 2017, vol. 116, no. 7, pp. 496–504. doi: 10.1016/j.jfma.2017.04.009
- Troeger C., Blacker B.F., Khalil I.A., Rao P.C., Cao S., Zimsen S.R.M., Albertson S., Stanaway J.D., Deshpande A., Farag T., Forouzanfar M.H., Abebe Z., Adetifa I.M.O., Adhikari T.B., Akibu M., Al Lami F.H., Al-Eyadhy A., Alvis-Guzman N., Amare A.T., Amoako Y.A., Antonio C.A.T., Aremu O., Asfaw E.T., Asgedom S.W., Atey T.M., Attia E.F., E.Avokpaho F.G.A., Ayele H.T., Ayuk T.B., Balakrishnan K., Barac A., Bassat Q., Behzadifar M., Behzadifar M., Bhaumik S., Bhutta Z.A., Bijani A., Brauer M., Brown A., Camargos P.A.M., Castañeda-Orjuela C.A., Colombara D., Conti S., Dadi A.F., Dandona L., Dandona R., Do H.P., Dubljanin E., Edessa D., Elkout H., Endries A.Y., Fijabi D.O., Foreman K.J., Fullman N., Garcia-Basteiro A.L., Gessner B.D., Gething P.W., Gupta R., Gupta T., Hailu G.B., Hassen H.Y., Hedayati M.T., Heidari M., Hibstu D.T., Horita N., Ilesanmi O.S., Jakovljevic M.B., Jamal A.A., Kahsay A., Kasaeian A., Kassa D.H., Khader Y.S., Khan E.A., Khan M.N., Khang Y.-H., Kim Y.J., Kissoon N., Knibbs L.D., Kochhar S., Koul P.A., Kumar G.A., Lodha R., Abd El Razek H.M., Malta D.C., Mathew J.L., Mengistu D.T., Mezgebe H.B., Mohammad K.A., Mohammed M.A., Momeniha F., Murthy S., Nguyen C.T., Nielsen K.R., Ningrum D.N.A., Nirayo Y.L., Oren E., Ortiz J.R., Mahesh P.A., Postma M.J., Qorbani M., Quansah R., Rai R.K., Rana S.M., Ranabhat C.L., Ray S.E., Rezai M.S., Ruhago G.M., Safiri S., Salomon J.A., Sartorius B., Savic M., Sawhney M., She J., Sheikh A., Shiferaw M.S., Shigematsu M., Singh J.A., Somayaji R., Sufiyan M.B., Taffere G.R., Temsah M.-H., Thompson M.J., Tobe-Gai R., Topor-Madry R., Tran B.X., Tran T.T., Tuem K.B., Ukwaja K.N., Vollset S.E., Walson J.L., Weldegebreal F., Werdecker A., West T.E., Yonemoto N., El Sayed Zaki M., Zhou L., Zodpey S., Vos T., Lim S.S., Naghavi M., Murray C.J.L., Mokdad A.H., Hay S.I., Reiner R.C. Jr. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis., 2018, vol. 18, no. 11, pp. 1191–1210. doi: 10.1016/s1473-3099(18)30310-4
- Troeger C.E., Blacker B.F., Khalil I.A., Zimsen S.R.M., Albertson S.B., Abate D., Abdela J., Adhikari T.B., Aghayan S.A., Agrawal S., Ahmadi A., Aichour A.N., Aichour I., Aichour M.T.E., Al-Eyadhy A., Al-Raddadi R.M., Alahdab F., Alene K.A., Aljunid S.M., Alvis-Guzman N., Anber N.H., Anjomshoa M., Antonio C.A.T., Aremu O., Atalay H.T., Atique S., Attia E.F., Avokpaho E.F.G.A., Awasthi A., Babazadeh A., Badali H., Badawi A., Banoub J.A.M., Barac A., Bassat Q., Bedi N., Belachew A.B., Bennett D.A., Bhattacharyya K., Bhutta Z.A., Bijani A., Carvalho F., Castañeda-Orjuela C.A., Christopher D.J., Dandona L., Dandona R., Dang A.K., Daryani A., Degefa M.G., Demeke F.M., Dhimal M., Djalalinia S., Doku D.T., Dubey M., Dubljanin E., Duken E.E., Edessa D., El Sayed Zaki M., Fakhim H., Fernandes E., Fischer F., Flor L.S., Foreman K.J., Gebremichael T.G., Geremew D., Ghadiri K., Goulart A.C., Guo J., Ha G.H., Hailu G.B., Haj-Mirzaian A., Haj-Mirzaian A., Hamidi S., Hassen H.Y., Hoang C.L., Horita N., Hostiuc M., Irvani S.S.N., Jha R.P., Jonas J.B., Kahsay A., Karch A., Kasaeian A., Kassa T.D., Kefale A.T., Khader Y.S., Khan E.A., Khan G., Khan M.N., Khang Y.-H., Khoja A.T., Khubchandani J., Kimokoti R.W., Kisa A., Knibbs L.D., Kochhar S., Kosen S., Koul P.A., Koyanagi A., Defo B.K., Kumar G.A., Lal D.K., Lamichhane P., Leshargie C.T., Levi M., Li S., Macarayan E.R.K., Majdan M., Mehta V., Melese A., Memish Z.A., Mengistu D.T., Meretoja T.J., Mestrovic T., Miazgowski B., Milne G.J., Milosevic B., Mirrakhimov E.M., Moazen B., Mohammad K.A., Mohammed S., Monasta L., Morawska L., Mousavi S.M., Muhammed O.S.S., Murthy S., Mustafa G., Naheed A., Nguyen H.L.T., Nguyen N.B., Nguyen S.H., Nguyen T.H., Nisar M.I., Nixon M.R., Ogbo F.A., Olagunju A.T., Olagunju T.O., Oren E., Ortiz J.R., Mahesh P.A., Pakhale S., Patel S., Paudel D., Pigott D.M., Postma M.J., Qorbani M., Rafay A., Rafiei A., Rahimi-Movaghar V., Rai R.K., Rezai M.S., Roberts N.L.S., Ronfani L., Rubino S., Safari S., Safiri S., Saleem Z., Sambala E.Z., Samy A.M., Santric Milicevic M.M., Sartorius B., Sarvi S., Savic M., Sawhney M., Saxena S., Seyedmousavi S., Shaikh M.A., Sharif M., Sheikh A., Shigematsu M., Smith D.L., Somayaji R., Soriano J.B., Sreeramareddy C.T., Sufiyan M.B., Temsah M.-H., Tessema B., Teweldemedhin M., Tortajada-Girbés M., Tran B.X., Tran K.B., Tsadik A.G., Ukwaja K.N., Ullah I., Vasankari T.J., Vollset S.E., Vu G.T., Wada F.W., Waheed Y., Eoin West T., Wiysonge C.S., Yimer E.M., Yonemoto N., Zaidi Z., Vos T., Lim S.S., Murray C.J.L., Mokdad A.H., Hay S.I., Reiner R.C.Jr. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respir., Med., 2019, vol. 7, no. 1, pp. 69–89. doi: 10.1016/s2213-2600(18)30496-x
- Trougakos I.P., Stamatelopoulos K., Terpos E., Tsitsilonis O.E., Aivalioti E., Paraskevis D., Kastritis E., Pavlakis G.N., Dimopoulos M.A. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J. Biomed. Sci., 2021, vol. 28, no. 1, pp. 9. doi: 10.1186/s12929-020-00703-5
- Tuthill T.J., Groppelli E., Hogle J.M., Rowlands D.J. Picornaviruses. Curr. Top. Microbiol. Immunol., 2010, vol. 343, pp. 43–89. doi: 10.1007/82_2010_37
- Tyrrell D.A., Cohen S., Schlarb J.E. Signs and symptoms in common colds. Epidemiol. Infect., 1993, vol. 111, no. 1, pp. 143–156. doi: 10.1017/s0950268800056764
- Waman V.P., Kolekar P.S., Kale M.M., Kulkarni-Kale U. Population structure and evolution of rhinoviruses. PLoS One, 2014, vol. 9, no. 2: e88981. doi: 10.1371/journal.pone.0088981
- Weber T.P., Stilianakis N.I. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J. Infect., 2008, vol. 57, no. 5, pp. 361–373. doi: 10.1016/j.jinf.2008.08.013
- Weinberger Opek M., Yeshayahu Y., Glatman-Freedman A., Kaufman Z., Sorek N., Brosh-Nissimov T. Delayed respiratory syncytial virus epidemic in children after relaxation of COVID-19 physical distancing measures, Ashdod, Israel, 2021. Euro Surveill., 2021, vol. 26, no. 29: 2100706. doi: 10.2807/1560-7917.Es.2021.26.29.2100706
- WHO. Coronavirus disease (COVID-19) dashboard. 2021. URL: https://covid19.who.int
- WHO. Influenza (Seasonal). URL: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
- WHO. Overview of influenza activity globally. Influenza Update No. 411 of 27 January 2022. URL: https://www.who.int/publications/m/item/influenza-update-n-411
- Winther B. Rhinovirus infections in the upper airway. Proc. Am. Thorac. Soc., 2011, vol. 8, no. 1, pp. 79–89. doi: 10.1513/pats.201006-039RN
- Winther B. Rhinoviruses. In: International Encyclopedia of Public Health, Ed. Heggenhougen H.K. Academic Press: Oxford, 2008, pp. 577–581. doi: 10.1016/B978-012373960-5.00610-9
- Winther B., Gwaltney J.M., Hendley J.O. Respiratory virus infection of monolayer cultures of human nasal epithelial cells. Am. Rev. Respir. Dis., 1990, vol. 141, no. 4, pp. 839–845. doi: 10.1164/ajrccm/141.4_Pt_1.839
- Wolsk H.M., Følsgaard N.V., Birch S., Brix S., Hansel T.T., Johnston S.L., Kebadze T., Chawes B.L., Bønnelykke K., Bisgaard H. Picornavirus-induced airway mucosa immune profile in asymptomatic neonates. J. Infect. Dis., 2016, vol. 213, no. 8, pp. 1262–1270. doi: 10.1093/infdis/jiv594
- Wu A., Mihaylova V.T., Landry M.L., Foxman E.F. Interference between rhinovirus and influenza A virus: a clinical data analysis and experimental infection study. Lancet Microbe, 2020, vol. 1, no. 6, pp. e254-e262. doi: 10.1016/s2666-5247(20)30114-2
- Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 2020, vol. 323, no. 13, pp. 1239–1242. doi: 10.1001/jama.2020.2648
- Zanotto P.M., Gibbs M.J., Gould E.A., Holmes E.C. A reevaluation of the higher taxonomy of viruses based on RNA polymerases. J. Virol., 1996, vol. 70, no. 9, pp. 6083–6096. doi: 10.1128/JVI.70.9.6083-6096.1996
- Zlateva K.T., van Rijn A.L., Simmonds P., Coenjaerts F.E.J., van Loon A.M., Verheij T.J.M., de Vries J.J.C., Little P., Butler C.C., van Zwet E.W., Goossens H., Ieven M., Claas E.C.J.; GRACE Study Group. Molecular epidemiology and clinical impact of rhinovirus infections in adults during three epidemic seasons in 11 European countries (2007–2010). Thorax, 2020, vol. 75, no. 10, pp. 882–890. doi: 10.1136/thoraxjnl-2019-214317
Дополнительные файлы
