Протеины лектинового пути активации системы комплемента: иммунобиологические функции, генетика и участие в патогенезе заболеваний человека
- Авторы: Смольникова М.В.1, Терещенко С.Ю.1
-
Учреждения:
- НИИ медицинских проблем Севера — обособленное подразделение ФГБНУ ФИЦ Красноярский научный центр Сибирского отделения РАН
- Выпуск: Том 12, № 2 (2022)
- Страницы: 209-221
- Раздел: ОБЗОРЫ
- URL: https://ogarev-online.ru/2220-7619/article/view/119025
- DOI: https://doi.org/10.15789/2220-7619-POT-1777
- ID: 119025
Цитировать
Полный текст
Аннотация
Система комплемента является древнейшим компонентом врожденного иммунитета, основной функцией которого является преимущественно интраваскулярная элиминация бактериальных агентов. Кроме того, протеины комплемента играют роль своеобразного моста между системами врожденного и адаптивного иммунитета, обеспечивая адекватные условия для созревания и дифференциации В- и Т-лимфоцитов. Система комплемента состоит из плазменных протеинов и мембранных рецепторов. Плазменные протеины взаимодействуют между собой тремя известными каскадными путями — лектиновым (наиболее филогенетически древним), альтернативным и классическим. Лектины — общий термин протеинов, формирующих отдельное суперсемейство паттерн-распознающих рецепторов, способных к распознаванию и агрегации молекул олиго- и полисахаридной природы. Среди всех лектинов уникальными функциями формирования комплексов с углеводными компонентами микробной стенки обладают фиколины (FCN) (общий домен — фибрионоген) и коллектины (общий домен — коллаген) — маннозосвязывающий лектин (MBL), печеночный и почечный коллектины. Образование сложного комплекса «полисахариды микробной стенки + коллектин/фиколин + специфические маннозосвязывающие лектин-ассоциированные сериновые протеазы (MASP)» приводит, в итоге, к активации системы комплемента, воспалительной реакции и элиминации бактерии. Такой путь активации называется лектиновым, в отличие от двух других путей — классического и альтернативного. Изучение роли системы комплемента и врожденных дефектов протеинов в патогенезе различных заболеваний крайне актуально в связи с тем, что врожденные дефициты компонентов комплемента составляют не менее 5% от общего числа первичных иммунодефицитов, тогда как аспекты их распространенности и патогенеза остаются неизученными. Актуальность изучения компонентов системы комплемента для различных популяций значительна, учитывая накапливающиеся доказательства важной роли лектинового пути в отношении вирусных инфекций. Лектины, основные протеины лектинового пути активации комплемента, кодируются полиморфными генами, точечные мутации (Single Nucleotide Polymorphisms, SNPs) в которых приводят к изменению конформации и экспрессии белка, что в свою очередь имеет отражение на функциональности и способности отвечать на патоген. Распределение частот полиморфных генов лектинов и их гаплотипов имеет крайне выраженные популяционные различия. Согласно анализу доступных нам литературных данных, в настоящее время популяционные частоты мутаций, в том числе ассоциированных с врожденными дефицитами компонентов лектинового пути малочисленны или не изучены, поэтому в данной работе приведен обзор основных лектинов и их функции, изученных функционально значимых мутаций в различных популяциях и их патогенетической значимости для защитных функций организма.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Марина Викторовна Смольникова
НИИ медицинских проблем Севера — обособленное подразделение ФГБНУ ФИЦ Красноярский научный центр Сибирского отделения РАН
Email: smarinv@ya.ru
ORCID iD: 0000-0001-9984-2029
к.б.н., руководитель группы молекулярногенетических исследований, ведущий научный сотрудник
Россия, 660022, Красноярск, ул. Партизана Железняка, 3гСергей Ю. Терещенко
НИИ медицинских проблем Севера — обособленное подразделение ФГБНУ ФИЦ Красноярский научный центр Сибирского отделения РАН
Автор, ответственный за переписку.
Email: legise@mail.ru
ORCID iD: 0000-0002-1605-7859
д.м.н., профессор, зав. клиническим отделением соматического и психического здоровья детей
Россия, 660022, Красноярск, ул. Партизана Железняка, 3гСписок литературы
- Романов А.О., Беляева Т.В., Красильщикова И.В. Частота встречаемости полиморфизма +230G/A гена MBL у жителей Санкт-Петербурга // Medline.Ru. 2006. Т. 7, № 1. С. 372–377. [Romanov A.O., Belyaeva T.V., Krasilshchikova I.V. Frequency of occurrence of +230G/A polymorphism of the MBL gene in residents of St. Petersburg. Medline.Ru, 2006, vol. 7, no. 1, pp. 372–377. (In Russ.)]
- Aittoniemi J., Baer M., Soppi E., Vesikari T., Miettinen A. Mannan-binding lectin deficiency and concomitant immunodefects. Arch. Dis. Child., 1998, vol. 78, pp. 245–248. doi: 10.1136/adc.78.3.245
- Aittoniemi J., Miettinen A., Laippala P., Isolauri E., Viikari J., Ruuska T., Soppi E. Age-dependent variation in the serum concentration of mannan-binding protein. Acta Paediatr., 1996, vol. 85, pp. 906–909. doi: 10.1111/j.1651-2227.1996.tb14182.x.
- Akaiwa M., Yae Y., Sugimoto R., Suzuki S.O., Iwaki T., Izuhara K., Hamasaki N. Hakata antigen, a new member of the ficolin/opsonin p35 family, is a novel human lectin secreted into bronchus/alveolus and bile. J. Histochem. Cytochem., 1999, vol. 47, pp. 777–786. doi: 10.1177/002215549904700607
- Ali Y.M., Ferrari M., Lynch N.J., Yaseen S., Dudler T., Gragerov S., Demopulos G., Heeney J.L., Schwaeble W.J. Lectin pathway mediates complement activation by SARS-CoV-2 proteins. Front. Immunol., 2021, vol. 12: 714511. doi: 10.3389/fimmu.2021.714511
- Ali Y.M., Lynch N.J., Haleem K.S., Fujita T., EndoY., Hansen S., Holmskov U., Takahashi K., Stahl G.L., Dudler T., Girija U.V., Wallis R., Kadioglu A., Stover C.M., Andrew P.W., Schwaeble W.J. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection. PLoS Pathog., 2012, vol. 8, no. 7: e1002793. doi: 10.1371/journal.ppat.1002793
- Ambrosio A.R., De Messias-Reason I.J. Leishmania (Viannia) braziliensis: interaction of mannose-binding lectin with surface glycoconjugates and complement activation. An antibody-independent defence mechanism. Parasite Immunol., 2005, vol. 27, pp. 333–340. doi: 10.1111/j.1365-3024.2005.00782.x
- Ammitzbøll C.G., Kjær T.R., Steffensen R., Stengaard-Pedersen K., Nielsen H.J., Thiel S., Bøgsted M., Jensenius J.C. Non-synonymous polymorphisms in the FCN1 gene determine ligand-binding ability and serum levels of M-ficolin. PLoS One, 2012, vol. 7, no. 11: e50585. doi: 10.1371/journal.pone.0050585
- Arai T., Tabona P., Summerfield J.A. Human mannose-binding protein gene is regulated by interleukins, dexamethasone and heat shock. Q. J. Med., 1993, vol. 86, pp. 575–582. doi: 10.1093/oxfordjournals.qjmed.a068848
- Areeshi M.Y., Mandal R.K., Akhter N., Dar S.A., Jawed A., Wahid M., Mahto H., Panda A.K., Lohani M., Haque S. A meta-analysis of MBL2 polymorphisms and tuberculosis risk. Sci. Rep., 2016, vol. 6: 35728. doi: 10.1038/srep35728
- Bernig T., Breunis W., Brouwer N., Hutchinson A., Welch R., Roos D., Kuijpers T., Chanock S. An analysis of genetic variation across the MBL2 locus in Dutch Caucasians indicates that 3′ haplotypes could modify circulating levels of mannose-binding lectin. Hum. Genet., 2005, vol. 118, no. 3–4, pp. 404–415 doi: 10.1007/s00439-005-0053-5
- Bernig T., Taylor J.G., Foster C.B., Staats B., Yeager M., Chanock S.J. Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of het-erozygosity with evidence of selection. Genes Immun., 2004, vol. 5, pp. 461–476. doi: 10.1038/sj.gene.6364116
- Best L.G., Davidson M., North K.E., Maccluer J.W., Zhang Y., Lee E.T., Howard B.V., Decroo S., Ferrell R.E. Prospective analysis of mannose-binding lectin genotypes and coronary artery disease in American Indians: the strong heart study. Circulation, 2004, vol. 109, no. 4, pp. 471–475. doi: 10.1161/01.CIR.0000109757.95461.10
- Bjarnadottir H., Arnardottir M., Ludviksson B.R. Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics, 2016, vol. 68, no. 5, pp. 315–325. doi: 10.1007/s00251-016-0903-4
- Blom A.M., Villoutreix B.O., Dahlbäck B. Complement inhibitor C4b-binding protein-friend or foe in the innate immune system? Mol. Immunol., 2004, vol. 40, pp. 1333–1346. doi: 10.1016/j.molimm.2003.12.002
- Bohlson S.S., Fraser D.A., Tenner A.J. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol. Immunol., 2007, vol. 44, pp. 33–43. doi: 10.1016/j.molimm.2006.06.021
- Boldt A.B., Culpi L., Tsuneto L.T., De Souza I.R., Kun J.F., Petzl-Erler M.L. Diversity of the MBL2 gene in various Brazilian populations and the case of selection at the mannose-binding lectin locus. Hum. Immunol., 2006, vol. 67, no. 9, pp. 722–734. doi: 10.1016/j.humimm.2006.05.009
- Boldt A.B., Goeldner I., Stahlke E.R., Thiel S., Jensenius J.C., de Messias-Reason I.J. Leprosy association with low MASP-2 levels generated by MASP2 haplotypes and polymorphisms flanking MAp19 exon 5. PLoS One, 2013, vol. 8, no. 7: e69054. doi: 10.1371/journal.pone.0069054
- Boldt A.B., Luty A., Grobusch M.P., Dietz K., Dzeing A., Kombila M., Kremsner P.G., Kun J.F. Association of a new mannose-binding lectin variant with severe malaria in Gabonese children. Genes Immun., 2006, vol. 7, pp. 393–400. doi: 10.1038/sj.gene.6364312
- Boldt A.B., Messias-Reason I.J., Meyer D., Schrago C.G., Lang F., Lell B., Dietz K., Kremsner P.G., Petzl-Erler M.L., Kun J.F. Phylogenetic nomenclature and evolution of mannose-binding lectin (MBL2) haplotypes. BMC Genet., 2010, vol. 11: 38. doi: 10.1186/1471-2156-11-38
- Brodszki N., Frazer-Abel A., Grumach A.S., Kirschfink M., Litzman J., Perez E., Seppänen M.R.J., Sullivan K.E., Jolles S. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management. J. Clin. Immunol., 2020, vol. 40, no. 4, pp. 576–591. doi: 10.1007/s10875-020-00754-1
- Cao Y., Wang X., Cao Z., Wu C., Wu D., Cheng X. Genetic polymorphisms of MBL2 and tuberculosis susceptibility: a meta-analysis of 22 case-control studies. Arch. Med. Sci., 2018, vol. 14, no. 6, pp. 1212–1232. doi: 10.5114/aoms.2017.65319
- Cedzynski M., Nuytinck L., Atkinson A.P., St Swierzko A., Zeman K., SzemraJ. J., Szala A., Turner M.L., Kilpatrick D.C. Extremes of L-ficolin concentration in children with recurrent infections are associated with single nucleotide polymorphisms in the FCN2 gene. Clin. Exp. Immunol., 2007, vol. 150, pp. 99–104. doi: 10.1111/j.1365-2249.2007.03471.x
- Chalmers J.D., Mchugh B.J., Doherty C., Smith M.P., Govan J.R., Kilpatrick D.C., Hill A.T. Mannose-binding lectin deciency and disease severity in non-cystic fibrosis bronchiectasis: a prospective study. Lancet Respir. Med., 2013, vol. 1, no. 3, pp. 224–232. doi: 10.1016/S2213-2600(13)70001-8
- Charchaflieh J., Wei J., Labaze G., Hou Y.J., Babarsh B., Stutz H., Lee H., Worah M., Zhang M. The role of complement system in septic shock. Clin. Dev. Immunol., 2012, vol. 2012: 407324. doi: 10.1155/2012/407324
- Czerewaty M., Tarnowski M., Safranow K., Domanski L., Pawlik A. Mannose binding lectin 2 gene polymorphisms in patients after renal transplantation with acute graft rejection. Transpl. Immunol., 2019, vol. 54, pp. 29–37. doi: 10.1016/j.trim.2019.01.004
- Dahl M., Tybjaerg-Hansen A., Schnohr P., Nordestgaard B.G. A population-based study of morbidity and mortality in mannose-binding lectin deficiency. J. Exp. Med., 2004, vol. 199, pp. 1391–1399. doi: 10.1084/jem.20040111
- De Rooij B.J.F., van Hoek B., ten Hove W.R., Roos A., Bouwman L.H., Schaapherder A.F., Porte R.G., Daha M.R., van der Reijden J.J., Coenraad M.J., Ringers J., Baranski A.G., Hepkema B.G., Hommes D.W., Verspaget H.W. Lectin complement pathway gene profile of donor and recipient determine the risk of bacterial infections after orthotopic liver transplantation. Hepatology, 2010, vol. 52, pp. 1100–1110. doi: 10.1002/hep.23782
- Degn S.E., Jensen L., Gál P., Dobó J., Holmvad S.H., Jensenius J.C., Thiel S. Biological variations of MASP-3 and MAp44, two splice products of the MASP1 gene involved in regulation of the complement system. J. Immunol. Methods, 2010, vol. 361, pp. 37–50. doi: 10.1016/j.jim.2010.07.006
- Degn S.E., Jensen L., Hansen A.G., Duman D., Tekin M., Jensenius J.C., Thiel S. Mannan-binding lectin-associated serine protease (MASP)-1 is crucial for lectin pathway activation in human serum, whereas neither MASP-1 nor MASP-3 is required for alternative pathway function. J. Immunol., 2012, vol. 189, pp. 3957–3969. doi: 10.4049/jimmunol.1201736
- Eisen D.P., Dean M.M., Boermeester M.A., Fidler K.J., Gordon A.C., Kronborg G., Kun J.F.J., Lau Y.L., Payeras A., Valdimarsson H., Brett S.J., Ip W.K.E., Mila J., Peters M.J., Saevarsdottir S., van Till J.W.O., Hinds C.J., McBryde E.S. Low serum mannose-binding lectin level increases the risk of death due to pneumococcal infection. Clin. Infect. Dis., 2008, vol. 47, no. 4, pp. 510–516. doi: 10.1086/590006
- Eisen D.P., Ostho M. If there is an evolutionary selection pressure for the high frequency of MBL2 polymorphisms, what is it? Clin. Exp. Immunol., 2014, vol. 176, no. 2, pp. 165–171. doi: 10.1111/cei.12241
- Eriksson O., Hultström M., Persson B., Lipcsey M., Ekdahl K.N., Nilsson B., Frithiof R. Mannose-binding lectin is associated with thrombosis and coagulopathy in critically ill COVID-19 patients. Thromb. Haemost., 2020, vol. 120, no. 12, pp. 1720–1724. doi: 10.1055/s-0040-1715835
- Ezekowitz R.A., Day L.E., Herman G.A. A human mannose-binding protein is an acute-phase reactant that shares sequence homology with other vertebrate lectins. J. ExpMed., 1988, vol. 167, pp. 1034–1046. doi: 10.1084/jem.167.3.1034
- Fisch U.P., Zehnder A., Hirt A., Niggli F.K., Simon A., Ozsahin H., Schlapbach L.J., Ammann R.A. Mannan-binding lectin (MBL) and MBL-associated serine protease-2 in children with cancer. Swiss Med. Wkly, 2011, vol. 141: w13191. doi: 10.4414/smw.2011.13191
- Garcia-Laorden M.I., Sole-Violan J., Rodriguez de Castro F., Aspa J., Briones M.L., Garcia-Saavedra A., Rajas O., Blanquer J., Caballero-Hidalgo A., Marcos-Ramos J.A., Hernandez-Lopez J., Rodriguez-Gallego C. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J. Allergy Clin. Immunol., 2008, vol. 122, no. 2, pp. 368–374. doi: 10.1016/j.jaci.2008.05.037
- Garred P., Honore C., Ma Y.J., Munthe-Fog L., Hummelshøj T. MBL2, FCN1, FCN2 and FCN3 — the genes behind the initiation of the lectin pathway of complement. Mol. Immunol., 2009, vol. 46, no. 14, pp. 2737–2744. doi: 10.1016/j.molimm.2009.05.005
- Hegele R.A., Busch C.P., Young T.K., Connelly P.W., Cao H. Mannose-binding lectin gene variation and cardiovascular disease in Canadian inuit. Clin. Chem., 1999, vol. 45, no. 8 (pt 1), pp. 1283–1285. doi: 10.1093/clinchem/45.8.1283
- Heitzeneder S., Seidel M., Förster-Wald l.E., Heitger A. Mannan-binding lectin deficiency — good news, bad news, doesn’t matter? Clin. Immunol., 2012, vol. 143, pp. 22–38. doi: 10.1016/j.clim.2011.11.002
- Héja D., Harmat V., Fodor K., Wilmanns M., Dobó J., Kékesi K.A. Monospecific inhibitors show that both mannan-binding lectin-associated serine protease-1 (MASP-1) and -2 are essential for lectin pathway activation and reveal structural plasticity of MASP-2. J. Biol. Chem., 2012, vol. 287, pp. 20290–20300. doi: 10.1074/jbc.M112.354332
- Héja D., Kocsis A., Dobó J., Szilágyi K., Szász R., Závodszky P., Pál G., Gál P. Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 10498–10503. doi: 10.1073/pnas.1202588109
- Herpers B.L., Immink M.M., de Jong B.A., van Velzen-Blad H., de Jongh B.M., van Hannen E.J. Coding and non-coding polymorphisms in the lectin pathway activator L-ficolin gene in 188 Dutch blood bank donors. Mol. Immunol., 2006, vol. 43, pp. 851–855. doi: 10.1016/j.molimm.2005.06.035
- Holmberg V., Onkamo P., Lahtela E., Lahermo P., Bedu-Addo G., Mockenhaupt F.P., Meri S. Mutations of complement lectin pathway genes MBL2 and MASP2 associated with placental malaria. Malar J., 2012, vol. 11: 61. doi: 10.1186/1475-2875-11-61
- Hummelshøj T., Fog L.M., Madsen H.O., Sim R.B., Garred P. Comparative study of the human ficolins reveals unique features of ficolin-3 (Hakata antigen). Mol. Immunol., 2008, vol. 45, pp. 1623–1632. doi: 10.1016/j.molimm.2007.10.006
- Hummelshøj T., Munthe-Fog L., Madsen H.O., Fujita T., Matsushita M., Garred P. Polymorphisms in the FCN2 gene determine serum variation and function of ficolin-2. Hum. Mol. Genet., 2005, vol. 14, pp. 1651–1658. doi: 10.1093/hmg/ddi173
- Ingels C., Vanhorebeek I., Steffensen R., Derese I., Jensen L., Wouters P.J., Hermans G., Thiel S., den Berghe G.V. Lectin pathway of complement activation and relation with clinical complications in critically ill children. Pediatr. Res., 2014, vol. 75, pp. 99–108. doi: 10.1038/pr.2013.180
- Ip W.K.E., Chan K.H., Law H.K.W., Tso G.H.W., Kong E.K.P., Wong W.H.S., To Y.F., Yung R.W.H., Chow E.Y., Au K.L., Chan E.Y.T., Lim W., Jensenius J.C., Turner M.W., Peiris J.S.M., Lau Y.L. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J. Infect. Dis., 2005, vol. 191, no. 10, pp. 1697–1704. doi: 10.1086/429631
- Jack D., Turner M. Antimicrobial activities of mannose-binding lectin. Biochem. Soc. Trans., 2003, vol. 31, pp. 753–757. doi: 10.1042/bst0310753
- Jensen P.H., Laursen I., Matthiesen F., Højrup P. Post translational modifications in human plasma MBL and human recombinant MBL. Biochim. Biophys. Acta., 2007, vol. 1774, pp. 335–344. doi: 10.1016/j.bbapap.2006.12.008
- Kang H.J., Lee S.-M., Lee H.-H., Kim J.Y., Lee B.-C., Yum J.-S., Moon H.M., Lee B.L. Mannose-binding lectin without the aid of its associated serine proteases alters lipopolysaccharide-mediated cytokine/chemokine secretion from human endothelial cells. Immunology, 2007, vol. 122, pp. 335–342. doi: 10.1111/j.1365-2567.2007.02644.x
- Kilpatrick D. Mannan-binding lectin and its role in innate immunity. Transfus. Med., 2003, vol. 12, no. 6, pp. 335–352. doi: 10.1046/j.1365-3148.2002.00408.x
- Kilpatrick D.C., Chalmers J.D. Human L-ficolin (ficolin-2) and its clinical significance. J. Biomed. Biotechnol., 2012, vol. 2012. doi: 10.1155/2012/138797
- Kilpatrick D.C., St Swierzko A., Matsushita M., Domzalska-Popadiuk I., Borkowska-Klos M., Szczapa J., Cedzynski M. The relationship between FCN2 genotypes and serum ficolin-2 (L-ficolin) protein concentrations from a large cohort of neonates. Hum. Immunol., 2013, vol. 74, pp. 867–871. doi: 10.1016/j.humimm.2013.04.011
- Kjaer T.R., Thiel S., Andersen G.R. Toward a structure-based comprehension of the lectin pathway of complement. Mol. Immunol., 2013, vol. 56, pp. 413–422. doi: 10.1016/j.molimm.2013.05.220
- Klabunde J., Berger J., Jensenius J.C., Klinkert M.Q., Zelck U.E., Kremsner P.G., Kun J.F. Schistosoma mansoni: adhesion of mannan-binding lectin to surface glycoproteins of cercariae and adult worms. Exp. Parasitol., 2000, vol. 95, pp. 231–239. doi: 10.1006/expr.2000.4539
- Klabunde J., Uhlemann A.-C., Tebo A.E., Kimmel J., Schwarz R.T., Kremsner P.G., Kun J.F. Recognition of plasmodium falciparum proteins by mannan-binding lectin, a component of the human innate immune system. Parasitol. Res., 2002, vol. 88, pp. 113–117. doi: 10.1007/s00436-001-0518-y
- Lipscombe R.J., Sumiya M., Summerfield J.A., Turner M.W. Distinct physico-chemical characteristics of human mannose binding protein expressed by individuals of differing genotype. Immunology, 1995, vol. 85, pp. 660–667.
- Luo J., Xu F., Lu G.-J., Lin H.-C., Feng Z.-C. Low mannose-binding lectin (MBL) levels and MBL genetic polymorphisms associated with the risk of neonatal sepsis: an updated meta-analysis. Early Hum. Dev., 2014, vol. 90, no. 10, pp. 557–564. doi: 10.1016/ j.earlhumdev.2014.07.007
- Madsen H.O., Garred P., Kurtzhals J.A., Lamm L.U., Ryder L.P., Thiel S., Svejgaard A. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics, 1994, vol. 40, pp. 37–44. doi: 10.1007/BF00163962
- Madsen H.O., Garred P., Thiel S., Kurtzhals J.A., Lamm L.U., Ryder L.P., Svejgaard A. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J. Immunol., 1995, vol. 155, no. 6, pp. 3013–3020.
- Madsen H.O., Satz M.L., Hogh B., Svejgaard A., Garred P. Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J. Immunol., 1998, vol. 161, no. 6, pp. 3169–3175.
- Madsen H.O., Videm V., Svejgaard A., Svennevig J.L., Garred P. Association of mannose-binding lectin deficiency with severe atherosclerosis. Lancet, 1998, vol. 352, pp. 959–960. doi: 10.1016/S0140-6736(05)61513-9
- Manolis A.S., Manolis T.A., Manolis A.A., Papatheou D., Melita H. COVID-19 Infection: Viral Macro- and micro-vascular coagulopathy and thromboembolism/prophylactic and therapeutic management. J. Cardiovasc. Pharmacol. Ther., 2021, vol. 26, no. 1, pp. 12–24. doi: 10.1177/1074248420958973
- Matricardi P.M., Negro R.W.D., Nisin R. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr. Allergy Immunol., 2020, vol. 31, no. 5, pp. 454–470. doi: 10.1111/pai.13271
- Matsushita M., Endo Y., Taira S., Sato Y., Fujita T., Ichikawa N., Nakata M., Mizuochi T. A novel human serum lectin with collagen and fibrinogen-like domains that functions as an opsonin. J. Biol. Chem., 1996, vol. 271, pp. 2448–2454. doi: 10.1074/jbc.271.5.2448
- Mayilyan K.R., Arnold J.N., Presanis J.S., Soghoyan A.F., Sim R.B. Increased complement classical and mannan-binding lectin pathway activities in schizo-phrenia. Neurosci. Lett., 2006, vol. 404, pp. 336–341. doi: 10.1016/j.neulet.2006.06.051
- Michalski M., St Swierzko A., Lukasiewicz J., Man-Kupisinska A., Karwaciak I., Przygodzka P., Cedzynski M. Ficolin-3 activity towards the opportunistic patho-gen, Hafnia alvei. Immunobiology, 2015, vol. 220, pp. 117–123. doi: 10.1016/j.imbio.2014.08.012
- Michalski M., Szala A., St Swierzko A., Lukasiewicz J., Maciejewska A., Kilpatrick D.C., Matsushita M., Domzalska-Popadiuk I., Borkowska-Klos M., Sokolowska A., Szczapa J., Lugowski C., Cedzynski M. H-ficolin (ficolin-3) concentrations and FCN3 gene polymorphism in neonates. Immunobiology, 2011, vol. 217, pp. 730–737. doi: 10.1016/j.imbio.2011.12.004
- Mishra A., Antony J.S., Sundaravadivel P., Tong H.V., Meyer C.G., Jalli R.D., Velavan T.P., ThangaraJ. K. Association of ficolin-2 serum levels and FCN2 genetic variants with Indian visceral leishmaniasis. PLoS One, 2015, vol. 10, no. 5: e0125940. doi: 10.1371/journal.pone.0125940
- Monsey L., Best L.G., Zhu J., Decroo S., Anderson M.Z. The association of mannose binding lectin genotype and immune response to Chlamydia pneumoniae: the strong heart study. PLoS One, 2019, vol. 14, no. 1: e0210640. doi: 10.1371/journal.pone.0210640
- Munthe-Fog L., Hummelshøj T., Hansen B.E., Koch C., Madsen H.O., Skjodt K., Garred P. The impact of FCN2 polymorphisms and haplotypes on the ficolin-2 serum levels. Scand. J. Immunol., 2007, vol. 65, pp. 383–392. doi: 10.1111/j.1365-3083.2007.01915.x
- Nauta A.J., Castellano G., Xu W., Woltman A.M., Borrias M.C., Daha M.R., Kooten C., Roos A. Opsonization with C1q and mannose-binding lectin targets apoptotic cells to dendritic cells. J. Immunol., 2004, vol. 173, pp. 3044–3050. doi: 10.4049/jimmunol.173.5.3044
- Notarangelo L., Casanova J.-L., Fischer A., Puck J., Rosen F., Seger R., Geha R. Primary immunodeficiency diseases: an update. J. Allergy Clin. Immunol., 2004, vol. 114, no. 3, pp. 677–687. doi: 10.1016/j.jaci.2004.06.044
- Rambaldi A., Gritti G., Micò M.C., Frigeni M., Borleri G., Salvi A., Landi F., Pavoni C., Sonzogni A., Gianatti A., Binda F., Fagiuoli S., Marco F.D., Lorini L., Remuzzi G., Whitaker S., Demopulos G. Endothelial injury and thrombotic microangiopathy in COVID-19: Treatment with the lectin-pathway inhibitor narsoplimab. Immunobiology, 2020, vol. 225, no. 6: 152001. doi: 10.1016/j.imbio.2020.152001
- Ren Y., Ding Q., Zhang X. Ficolins and infectious diseases. Virol. Sin., 2014, vol. 29, pp. 25–32. doi: 10.1007/s12250-014-3421-2
- Ricklin D., Hajishengallis G., Yang K., Lambris J.D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol., 2010, vol. 11, pp. 785–797. doi: 10.1038/ni.1923
- Ruskamp J.M., Hoekstra M.O., Postma D.S., Kerkhof M., Bottema R.W., Koppelman G.H., Rovers M.M., Wijga A.H., de Jongste J.C., Brunekreef B., Sanders E.A.M. Exploring the role of polymorphisms in ficolin genes in respiratory tract infections in children. Clin. Exp. Immunol., 2009, vol. 155, no. 3, pp. 433–440. doi: 10.1111/j.1365-2249.2008.03844.x
- Sallenbach S., Thiel S., Aebi C., Otth M., Bigler S., Jensenius J.C., Schlapbach L.J., Ammann R.A. Serum concentrations of lectin-pathway components in healthy neonates, children and adults: mannan-binding lectin (MBL), M-, L-, and H-ficolin, and MBL-associated serine protease-2 (MASP-2). Pediatr. Allergy Immunol., 2011, vol. 22, pp. 424–430. doi: 10.1111/j.1399-3038.2010.01104.x
- Sastry K., Herman G.A., Day L., Deignan E., Bruns G., Morton C.C., Ezekowitz R.A.B. The human mannose-binding protein gene. Exon structure reveals its evolutionary relationship to a human pulmonary surfactant gene and localization to chromosome 10. J. Exp. Med., 1989, vol. 170, pp. 1175–1189. doi: 10.1084/jem.170.4.1175
- Skalnikova H., Freiberger T., Chumchalova J., Grombirikova H., Sediva A. Cost-effective genotyping of human MBL2 gene mutations using multiplex PCR. J. Immunol. Methods, 2004, vol. 295, no. 1–2, pp. 139–147. doi: 10.1016/j.jim.2004.10.007
- Skjoedt M.-O., Hummelshøj T., Palarasah Y., Honore C., Koch C., Skjodt K., Garred P. A novel mannose-binding lectin/ficolin-associated protein is highly expressed in heart and skeletal muscle tissues and inhibits complement activation. J. Biol. Chem., 2010, vol. 285, pp. 8234–8243. doi: 10.1074/jbc.M109.065805
- Smolnikova M.V., Freidin M.B., Tereshchenko S.Y. The prevalence of the variants of the L-ficolin gene (FCN2) in the arctic populations of East Siberia. Immunogenetics, 2017, vol. 69, no. 6, pp. 409–413. doi: 10.1007/s00251-017-0984-8
- Steffensen R., Thiel S., Varming K., Jersild C., Jensenius J.C. Detection of structural gene mutations and promoter polymorphisms in the mannan-binding lectin (MBL) gene by polymerase chain reaction with sequence-specific primers. J. Immunol. Methods, 2000, vol. 241, pp. 33–42. doi: 10.1016/s0022-1759(00)00198-8
- Stengaard-Pedersen K., Thiel S., Gadjeva M., Møller-Kristensen M., Sørensen R., Jensen L.T., Sjøholm A.G., Fugger L., Jensenius J.C. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N. Engl. J. Med., 2003, vol. 349, no. 6, pp. 554–560. doi: 10.1056/NEJMoa022836
- Sullivan K.E., Wooten C., Goldman D., Petri M. Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis Rheumatol., 1996, vol. 39, no. 12, pp. 2046–2051. doi: 10.1002/art.1780391214
- Sumiya M., Super M., Tabona P., Levinsky R.J., Arai T., Turner M.W., Summerfield J.A. Molecular basis of opsonic defect in immunodeficient children. Lancet, 1991, vol. 337, pp. 1569–1570. doi: 10.1016/0140-6736(91)93263-9
- Takahashi M., Iwaki D., Kanno K., Ishida Y., Xiong J., Matsushita M., Endo Y., Miura S., Ishii N., Sugamura K., Fujita T. Mannose-binding lectin (MBL)-associated serine protease (MASP)-1 contributes to activation of the lectin complement pathway. J. Immunol., 2008, vol. 180, pp. 6132–6138. doi: 10.4049/jimmunol.180.9.6132
- Tenner A.J., Robinson S.L., Ezekowitz R.A. Mannose binding protein (MBP) enhances mononuclear phagocyte function via a receptor that contains the 126,000 M(r) component of the C1q receptor. Immunity, 1995, vol. 3, pp. 485–493. doi: 10.1016/1074-7613(95)90177-9
- Terai I., Kobayashi K. Perinatal changes in serum mannose-binding protein (MBP) levels. Immunol. Lett., 1993, vol. 38, pp. 185–187. doi: 10.1016/0165-2478(93)90004-l
- Tereshchenko S.Y., Kasparov E.V., Smolnikova M.V., Kuvshinova E.V. Mannose-binding lectin deciency in respiratory diseases. Rus. Pulmonol., 2016, vol. 26, no. 6, pp. 748–752. doi: 10.1159/000228159
- Tereshchenko S.Y., Smolnikova M.V., Freidin M.B. Mannose-binding lectin gene polymorphisms in the East Siberia and Russian Arctic populations. Immunogenetics, 2020, vol. 72, no. 6–7, pp. 347–354. doi: 10.1007/s00251-020-01175-5
- Thiel S. Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol. Immunol., 2007, vol. 44, pp. 3875–3888. doi: 10.1016/j.molimm.2007.06.005
- Thiel S., Holmskov U., Hviid L., Laursen S.B., Jensenius J.C. The concentration of the C-type lectin, mannan-binding protein, in human plasma increases during an acute phase response. Clin. Exp. Immunol., 1992, vol. 90, pp. 31–35. doi: 10.1111/j.1365-2249.1992.tb05827.x
- Thiel S., Kolev M., Degn S., Steffensen R., Hansen A.G., Ruseva M., Jensenius J.C. Polymorphisms in mannan-binding lectin (MBL)-associated serine protease 2 affect stability, binding to MBL, and enzymatic activity. J. Immunol., 2009, vol. 182, pp. 2939–2947. doi: 10.4049/jimmunol.0802053
- Thiel S., Steffensen R., Christensen I.J., Ip W.K., Lau Y.L., Reason I.J., Eiberg H., Gadjeva M., Ruseva M., Jensenius J.C. Deficiency of mannan-binding lectin associated serine protease-2 due to missense polymorphisms. Genes Immun., 2007, vol. 8, pp. 154–163. doi: 10.1038/sj.gene.6364373
- Trégoat V., Montagne P., Béné M.-C., Faure G. Changes in the mannan binding lectin (MBL) concentration in human milk during lactation. J. Clin. Lab. Anal., 2002, vol. 16, pp. 304–307. doi: 10.1002/jcla.10055
- Tulio S., Faucz F.R., Werneck R.I., Olandoski M., Alexandre R.B., Boldt A.B., Pedroso M.L., de Messias-Reason I.J. MASP2 gene polymorphismis associated with susceptibility to hepatitis C virus infection. Hum. Immunol., 2011, vol. 72, pp. 912–915. doi: 10.1016/j.humimm.2011.06.016
- Verdu P., Barreiro L.B., Patin E., Gessain A., Cassar O., Kidd J.R., Kidd K.K., Behar D.M., Froment A., Heyer E., Sica L., Casanova J.L., Abel L., Quintana-Murci L. Evolutionary insights into the high worldwide prevalence of MBL2 deciency alleles. Hum. Mol. Genet., 2006, vol. 15, no. 17, pp. 2650–2658. doi: 10.1093/hmg/ddl193
- Walport M.J. Complement. First of two parts. N. Engl. J. Med., 2001, vol. 344, pp. 1058–1066. doi: 10.1056/NEJM200104053441406
- Wittenborn T., Thiel S., Jensen L., Nielsen H.J., Jensenius J.C. Characteristics and biological variations of M-ficolin, a pattern recognition molecule, in plasma. J. Innate Immun., 2010, vol. 2, pp. 167–180. doi: 10.1159/000218324
- Ytting H., Christensen I.J., Thiel S., Jensenius J.C., Nielsen H.J. Pre- and postoperative levels in serum of mannan-binding lectin associated serine protease-2 — a prognostic marker in colorectal cancer. Hum. Immunol., 2008, vol. 69, pp. 414–420. doi: 10.1016/ j.humimm.2008.05.005
- Ytting H., Christensen I.J., Thiel S., Jensenius J.C., Nielsen H.J. Serum mannan-binding lectin-associated serine protease-2 levels in colorectal cancer: relation to recurrence and mortality. Clin. Cancer Res., 2005, vol. 11, pp. 1441–1446. doi: 10.1158/1078-0432.CCR-04-1272
- Zhang J.X., Gong W.P., Zhu D.L., An H.R., Yang Y.R., Liang Y., Wang J., Tang J., Zhao W.G., Wu X.Q. Mannose-binding lectin 2 gene polymorphisms and their association with tuberculosis in a Chinese population. Infect. Dis. Poverty, 2020, vol. 9, no. 1: 46. doi: 10.1186/s40249-020-00664-9
Дополнительные файлы
