Saposin D acting on macrophage bacteriostatic function in experimental tuberculosis infection

Cover Page

Cite item

Full Text

Abstract

The protection against tuberculosis infection is largely determined by the ability of host tissue macrophages to limit the growth and spread of mycobacteria. Able to multiply within the host macrophages, mycobacteria have developed a number of protective mechanisms preventing phagosome-lysosome fusion, thereby evading damaging effects of lysosomal enzymes. Saposins are small, acidic, thermostable, non-enzymatic glycoproteins that participate as co-fac-tors in degradation of short oligosaccharide head group glycosphingolipids. Saposins A, B, C and D are formed in acidic endosomes due to cleavage of initial prosaposin molecule. The effect of saposins on human immune response is mediated by their involvement in presenting mycobacterial antigens on CD1 molecules. Preliminary studies with electron microscopy allowed to uncover saposin D-bound damaging effect on Mycobacterium tuberculosis in acidic environment. These data allowed us to suggest that saposin D is an important protective component fighting against TB infection. The aim of the study was to explore how saposin D deficiency might affect formation of anti-tuberculosis immune response and ability of macrophages to inhibit M. tuberculosis growth. Materials and methods. Interstitial pulmonary macrophages and peritoneal macrophages were isolated from wild type C57BL/6 strain and saposin D deficient C57BL/6-SapD-/- mouse strains. Results. It was found that as compared to macrophages from mice, macrophages from wild type strain significantly better controlled mycobacteria growth in vitro. To study an opportunity of compensating for deficient saposin D in peritoneal macrophages from C57BL/6-SapD-/- mice, a saposin D gene-bearing lentiviral vector was created. Transfection of SAPD-deficient peritoneal macrophages with expression vector compensated for saposin D deficiency in such cells and restored bactericidal function. The mechanisms of action for current anti-TB drugs are mediated by various metabolic pathways in mycobacteria (inhibited biosynthesis of fatty acids, arabinogalactan, peptidoglycan and protein; inhibition of DNA-dependent processes, proton pumps and cytochrome P450-dependent monooxygenases). Conclusion. It was shown that saposin D deficiency affects activation of macrophage bactericidal function in vitro. Our study data may be a prerequisite for biologically substantiated potential of using a vector construct bearing natural human protein gene such as saposin D, as a new anti-tuberculosis drug.

About the authors

G. S. Shepelkova

Central Tuberculosis Research Institute

Author for correspondence.
Email: shepelkovag@yahoo.com
ORCID iD: 0000-0001-6854-7932

Galina S. Shepelkova - PhD (Biology), Senior Researcher, Laboratory for Clinical Immunogenetics and Cell Technologies, Central Tuberculosis Research Institute.

107564, Moscow, Yauza alley, 2.

Phone: +7 (499) 785-90-72

Russian Federation

V. V. Evstifeev

Central Tuberculosis Research Institute

Email: vladimir-evstifeev@yandex.ru

PhD (Biology), Senior Researcher, Laboratory for Clinical Immunogenetics and Cell Technologies, Central Tuberculosis Research Institute.

Moscow.

Russian Federation

A. E. Ergeshov

Central Tuberculosis Research Institute

Email: cniit@ctri.ru
ORCID iD: 0000-0002-2494-9275

PhD, MD (Medicine), Professor, Director of the Central Tuberculosis Research Institute.

Moscow.

Russian Federation

V. V. Yeremeev

Central Tuberculosis Research Institute

Email: yeremeev56@mail.ru
ORCID iD: 0000-0001-6608-7557

PhD, MD (Medicine), Deputy Director of the Central Tuberculosis Research Institute.

Moscow.

Russian Federation

References

  1. Еремеев В.В., Апт А.С. Сапозин-подобные белки в противоинфекционном иммунном ответе // Инфекция и иммунитет. 2012. Т. 2, № 3. C. 597—602. doi: 10.15789/2220-76192012-3-597-602
  2. Шепелькова Г.С., Евстифеев В.В., Апт А.С. Исследование молекулярных механизмов патогенеза туберкулеза в экспериментальных моделях // Туберкулез и болезни легких. 2012. Т. 89, № 7. С. 3—11.
  3. Шепелькова Г.С., Майоров К.Б., Евстифеев В.В., Апт А.С. Взаимодействие Т-лимфоцитов CD4+CD27hi и CD4+CD27lD с макрофагами при туберкулезной инфекции у мышей // Туберкулез и болезни легких. 2015. № 12. С. 57—60.
  4. Collins H.L., Kaufmann S.H.E. The many faces of host response to tuberculosis. Immunology, 2001, vol. 103, no. 1, pp. 1—9. doi: 10.1046/j.1365-2567.2001.01236.x
  5. Hoffman J.A., Kafatos F.C., Janeway C.A., Ezekowitz R.A. Phylogenetic perspectives in innate immunity. Science, 1999, vol. 284, no. 5418, pp. 1313-1318. doi: 10.1126/science.284.5418.1313
  6. Kishimoto Y., Hiraiwa M., O'Brien J.S. Saposins: structure, function, distribution, and molecular genetics. J. Lipid Res., 1992, vol. 33, no. 9, pp. 1255-1267.
  7. Kolter T., Winau F., Schaible U.E., Leippe M., Sandhoff K. Lipid-binding proteins in membrane digestion, antigen presentation, and antimicrobial defense. J. Biol. Chem., 2005, vol. 280, no. 50, pp. 41125- 41128. doi: 10.1074/jbc.R500015200
  8. Lyadova I.V., Eruslanov E.B., Khaidukov S.V., Yeremeev V.V., Majorov K.B., Pichugin A.V., Nikonenko B.V., Kondratieva T.K., Apt A.S. Comparative analysis of T lymphocytes recovered from the lungs of mice genetically susceptible, resistant, and hyperresistant to Mycobacterium tuberculosis-triggered disease. J. Immunol., 2000, vol. 165, no. 10, pp. 5921—5931. doi: 10.4049/jimmunol.165.10.5921
  9. MacMicking, J.D., North R.J., LaCourse R., Mudqett J.S., Shah S.K., Nathan C.F. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA, 1997, vol. 94, no. 10, pp. 5243—5248. doi: 10.1073/pnas.94.10.5243
  10. Majorov K.B., Lyadova I.V., Kondratieva T.K., Eruslanov E.B., Rubakova E.I., Orlova M.O., Mischenko V.V., Apt A.S. Different innate ability of I/St and A/Sn mice to combat virulent Mycobacterium tuberculosis: phenotypes expressed in lung and extrapul-monary macrophages. Infect. Immun, 2003, vol. 71, no. 2, pp. 697—707. doi: 10.1128/iai.71.2.697-707.2003
  11. Matsuda J., Kido M., Tadano-Aritomi K., Ishizuka I., Tominaga K., Toida K., Takeda E., Suzuki K., Kuroda Y. Mutation in sa-posin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in mouse. Hum. Mol. Genet., 2004, vol. 13, no. 21, pp. 2709—2723. doi: 10.1093/hmq/ddh281
  12. McShane H., Jacobs W.R., Fine P.E., Reed S.G., McMurray D.N., Behr M., Williams A., Orme I.M. BCG: myths, realities, and the need for alternative vaccine strategies. Tuberculosis (Edinb), 2012, vol. 92, no. 3, pp. 283—288. doi: 10.1016/j.tube.2011.12.003
  13. Nikonenko B.V., Averbakh M.M. Jr., Lavebratt C., Schurr E., Apt A.S. Comparative analysis of mycobacterial infections in susceptible I/St and resistant A/Sn inbred mice. J. Immunol, 2000, vol. 165, no. 10,pp. 5921—5931. doi: 10.4049/jimmunol.165.10.5921
  14. WHO. Global Tuberculosis report 2019. Geneva: WHO, 2019. URL: https://www.who.int/tb/publications/global_report/ru/ (16.11.2020)
  15. Winau F., Schwierzeck V., Hurwitz R., Remmel N., Sieling P.A., Modlin R.L., Porcelli S.A., Brinkmann V., Sugita M., Sandhoff K., Kaufmann S.H., Schaible U.E. Saposin C is required for lipid presentation by human CD1b. Nat. Immunol., 2004, vol. 5, no. 2, pp. 169-174. doi: 10.1038/ni1035
  16. Young D.B., Perkins M.D., Duncan K., Barry C.E. 3rd. Confronting the scientific obstacles to global control of tuberculosis. J. Clin. Invest., 2008, vol. 118, no. 4, pp. 1255-1265. doi: 10.1172/JCI34614

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Shepelkova G.S., Evstifeev V.V., Ergeshov A.E., Yeremeev V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».