ДЕГИДРИРОВАНИЕ УГЛЕВОДОРОДОВ В КАТАЛИТИЧЕСКИХ МЕМБРАННЫХ РЕАКТОРАХ С СЕЛЕКТИВНЫМ ИЗВЛЕЧЕНИЕМ ВОДОРОДА НА ПАЛЛАДИЙСОДЕРЖАЩИХ И ПНБИ-МЕМБРАНАХ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе рассматриваются особенности протекания процессов дегидрирования алифатических и алкилароматических углеводородов в каталитическом мембранном реакторе, в котором помимо стадии химического превращения реагентов в продукты реакции на катализаторе присутствует стадия разделения полученных продуктов на водородеелективной мембране. Для стадии разделения в первом случае применяли плотную мембрану, изготовленную из сплава палладий-рутений, скрученную в упругую пружину, которую размещали непосредственно в горячей зоне реактора (600°C). Во втором случае использовали последовательный газоразделительный модуль с установленной непористой пленочной полимерной мембраной типа полинафтопленбензимидазол (ПНБИ)-σ, работающий при пониженной температуре (250°C).

Об авторах

А. С Федотов

ФГБУН Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: alexey.fedotov@ips.ac.ru
Москва, Российская Федерация

Д. Ю Грачев

ФГБУН Институт нефтехимического синтеза им. А. В. Топчиева РАН

Москва,Российская Федерация

А. Ю Алентьев

ФГБУН Институт нефтехимического синтеза им. А. В. Топчиева РАН

Москва, Российская Федерация

Список литературы

  1. Ethylene Industry Installed Capacity and Capital Expenditure (CapEx) Forecast by Region and Countries including details of All Active Plants, Planned and Announced Projects, 2021–2026. – Global Data. – 31.05.2022. [В Интернете]. Available: https://www.globaldata.com/store/report/ethylene-market-analysis/. [Дата обращения: 09.10.2025].
  2. Asia dominates global propylene capacity additions by 2026. – Offshore Technology. – 02.09.2022. [В Интернете]. Available: https://www.offshore-technology.com/comment/asia-global-propylene-capacity-2026/#:~:text=Global%20Propylene%20capacity%20is%20poised_registering%20total%20growth%20of%2039%25. [Дата обращения: 09.10.2025].
  3. Asia dominates global styrene capacity additions by 2026. – Offshore Technology. – 30.08.2022. [В Интернете]. Available: https://www.offshore-technology.com/comment/global-styrene-capacity-additions/#:~:text=Global%20Styrene%20capacity%20is%20poised_registering%20total%20growth%20of%2030%25. [Дата обращения: 09.10.2025].
  4. $542.9 Mn Alpha-Methylstyrene Market Global Forecast to 2024. – GlobeNewswire. – 27.05.2019. [В Интернете]. Available: https://www.globenewswire.com/news-release/2019/05/27/1850397/0/en/$42-9-MnAlpha-Methylstyrene-Market-Global-Forecast-to-2024.html. [Дата обращения: 09.10.2025].
  5. Abhammari A., Kalevaru V.N., Bagabas A., Martin A. Production of Ethylene and its Commercial Importance in the Global Market. // Petrochemical Catalyst Materials, Processes, and Emerging Technologies. 2016. P. 82–115.doi: 10.4018/978-1-4666-9975-5.ch004
  6. Лавренов А.В., Сайфулина Л.Ф., Булучевский Е.А., Богданович Е.Н. Технологии получения пропилена: сегодня и завтра. // Катализ в промышленности. 2015. N. 3. C. 6–19. https://www.catalysis-kalvis.ru/jour/article/view/274
  7. Natural Rubber Market Growth, Trends, Covid-19 Impact, and Forecasts (2023–2028). MarketWatch. 13.02.2023. [В Интернете]. Available: https://www.marketwatch.com/press-release/natural-rubber-market-share-projections-future-opportunities-recorded-for-the-period-until-2023-2028-2023-02-13. [Дата обращения: 09.10.2025].
  8. Natural Rubber Market Growth, Trends, Covid-19 Impact, and Forecasts (2023 2028). MordorIntelligence. 12.06.2022. [В Интернете]. Available: https://www.mordorintelligence.com/industry-reports/natural-rubber-market. [Дата обращения: 09.10.2025].
  9. Plastics for vehicles in the European Union. CBI Product Factsheet. 06.2016. [В Интернете]. Available: https://www.cbi.eu/sites/default/files/market-information/product-factsheet-europe-plastics-vehicles.pdf. [Дата обращения: 09.10.2025].
  10. Green Hydrogen Market by Technology (Proton Exchange Membrane Electrolyzer, Alkaline Electrolyzer, and Solid Oxide Electrolyzer), Application (Power Generation, Transport, and Others), and End-Live Industry (Food & Beverages, Medical, Chemical, Petrochemic. Allied Market Research. 05.2021. [В Интернете]. Available: https://www.alliedmarketresearch.com/green-hydrogen-market-A11310. [Дата обращения: 09.10.2025].
  11. Hydrogen at risk of being the great missed opportunity of the energy transition. DNV. 14.06.2022. [В Интернете]. Available: https://www.dnv.com/news/hydrogen-at-risk-of-being-the-great-missed-opportunity-of-the-energy-transition-226628. [Дата обращения: 09.10.2025].
  12. Filippov S.P., Yaroslavtsev A.B. Hydrogen energy: Development prospects and materials //Russian Chemical Reviews. 2021. V. 90. №. 6. P. 627. doi: 10.1070/RCR5014
  13. Yaroslavtsev A.B. Palladium: A vital key to BRICS’ future energy security. Creamer Media Reporter. 06.12.2024. https://www.miningweekly.com/article/palladium-a-vital-key-to-brics-future-energy-security-2024-12-06. [Дата обращения: 05.11.2025].
  14. Басов, Н.Л., Ермилова, М.М., Орехова, Н.В., Ярославцев, А.Б. Мембранный катализ в процессах дегидрирования и производства водорода //Успехи химии. 2013. Т. 82. №. 4. С. 352–368. doi: 10.1070/RC2013v082n04ABEH004324
  15. Ponomarev I.I., Volkova Y.A., Ponomarev I.I., Razorenov D.Y., Skupov K.M., Nikiforov R.Y., Chirkov S.V., Ryzhikh V.E., Belov N.A., Alentiev A.Y. Polymaphthoylenebenzimidazoles for gas separation—Unexpected PIM relatives //Polymer. 2022. V. 238. P. 124396. https://doi.org/10.1016/j.polymer.2021.124396
  16. Федотов А.С., Грачев Д.Ю., Капустин Р.Д. Кинетические особенности процесса дегидрирования кумола на пористых каталитических конвертерах. // Petroleum Chemistry. 2025. в печати.
  17. Fedotov A.S., Antonov D.O., Uvarov V.I., Tsodikov M.V. Original hybrid membrane-catalytic reactor for the Co-Production of syngas and ultrapure hydrogen in the processes of dry and steam reforming of methane, ethanol and DME. // International Journal of Hydrogen Energy. 2018. V. 43. N. 14. P. 7046–7054. doi: 10.1016/j.ijhydene.2018.02.060
  18. Fedotov A.S., Uvarov V.I., Tsodikov M.V., Paul S., Simon P., Marinova M., Dumengul F. Production of styrene by dehydrogenation of ethylbenzene on a [Re, W]/γ-Al2O3 (K, Ce)/α-Al2O3 porous ceramic catalytic converter. // Chemical Engineering and Processing-Process Intensification. 2021. V. 160. P. 108265. doi: 10.1016/j.cep.2020.108265
  19. Chen Z. et al. High hydrogen permeability of Pd-Ru-In membranes prepared by electroless co-deposition // Separation and Purification Technology. 2024. V. 343. P. 127073. doi: 10.1016/j.seppur.2024.127073
  20. Alentiev, D.A., Berneshev, M.V., Volkov, A.V., Petrova, I.V., & Yaroslavtsev, A.B. Palladium Membrane Applications in Hydrogen Energy and Hydrogen-Related Processes //Polymers. 2025. V. 17. №. 6. P. 743. doi: 10.3390/polym17060743
  21. El Hawa H.W.A. et al. Application of a Pd–Ru composite membrane to hydrogen production in a high temperature membrane reactor //Separation and Purification Technology. 2015. V. 147. P. 388–397. doi: 10.1016/j.seppur.2015.02.005
  22. Sheu W.J. et al. Investigation of steam methane reforming in a Pd–Ru membrane reactor with a counter-current configuration //International Journal of Hydrogen Energy. 2024. V. 52. P. 938–952. doi: 10.1016/j.ijhydene.2023.04.009
  23. Didenko L. P. et al. Steam reforming of n-butane in membrane reactor with industrial nickel catalyst and foil made of Pd–Ru alloy //Membranes and Membrane Technologies. 2020. V. 2. №. 2. P. 85–97. doi: 10.1134/S2517751620020055
  24. Alentiev A.Yu., Syrisova D.A., Nikiforov R.Yu., Ryzhikh V.E., Belov N.A., Skupov K.M., Volkova Yu.A., Ponomarev I.I. Polymaphthoylenebenzimidazoles as polymer materials for high-temperature membrane gas separation // Polymer 2024. V. 308. 127394. doi: 10.1016/j.polymer.2024.127394
  25. Zuo C., Su Q. Research Progress on Propylene Preparation by Propane Dehydrogenation. // Molecules. 2023. V. 28. №. 8. P. 3594. doi: 10.3390/molecules28083594
  26. Grub J., Löser E. Butadiene. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. 2012. V. 6. P. 381–396. https://www.ugr.es/~tep028/pqj/descargas/Industria%20quimica%20organica/tema_3/butadieno_a04_431.pdf
  27. Yaroslavtsev A.B., Stenina I.A. Current progress in membranes for fuel cells and reverse electrodialysis //Mendeleev Communications. 2021. V. 31. №. 4. P. 423–432. doi: 10.1016/j.mencom.2021.07.001
  28. Lysova A.A., Yurova P.A., Stenina I.A., Ponomarev I.I., Poureelly G., Yaroslavtsev A.B. Hybrid membranes based on polybenzimidazoles and silica with imidazoline-functionalized surface, candidates for fuel cells applications //Ionics. 2020. V. 26. №. 4. P. 1853–1860. doi: 10.1007/s11581-019-03423-5

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).