Transfer Features of Succinic Acid through Heterogeneous and Homogeneous Anion Exchange Membranes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work , the transfer of succinic acid through anion -exchange membranes of various types was studied at different pH values in a wide range of current densities. The results of the study showed that at pH = 8.0, when all succinic acid is in solution in a double- charged form, the mechanism of its transfer does not differ from the transfer of ions of strong electrolytes. At pH = 4.8, when all three forms of succinic acid (C 4 H 6 O 4 , C 4 H 5 O 4 - and C 4 H 4 O 4 2- ) are present in the solution , its transfer significantly depends on the type of membranes. The voltage characteristics of the membranes differ from the “classical” type of VAC measured in solutions of stro ng electrolytes. It has been found that at pH = 2.0 , succinic acid transfer increases with increasing electric current density, despite the fact that it is in molecular form.

About the authors

N. A. Romanyuk

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

M. V. Sharafan

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

A. R. Achoh

Kuban State University

Email: achoh-aslan@mail.ru
149 Stavropol str., Krasnodar, 350040, Russia

D. A. Bondarev

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

S. S. Melnikov

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

References

  1. Nghiem N.P., Kleff S., Schwegmann S. // Fermentation. 2017. V. 3(2). №. 26.
  2. Saxena R.K., Saran S., Isar J. // Current Developments in Biotechnology and Bioengineering. 2017. P. 601–630 .
  3. Smirnov A.V., Nesterova O.B., Golubev R.V. // Nephrol. (In Russ.). 2014. V. 18. № 2. P. 33–41 .
  4. Smirnov A.V., Nesterova, O.B., Golubev R.V. // Nephrol. (In Russ.). 2014. V. 18. № 4. P. 12–24 .
  5. Hoboken N.J. Kirk-Othme encyclopedia of chemical technology. 5th ed. Wiley Blac. New York. 1991. 994 p.
  6. Escanciano I.A., Wojtusik M., Esteban J. et al. // Fermentation. 2022. V. 8(8). № 368.
  7. McKinlay J.B., Vieille C., Zeikus J.G. // Appl. Microbiol. Biotechnol. 2007. V. 76. № 4. P. 727–740 .
  8. Cao Y., Zhang R., Sun C. et al. // Biomed. Res. Ind. 2013. № 723412.
  9. Jiang M., Ma J., Wu M. et al. // Bioresour. Technol. 2017. V. 245. P. 1710–1717.
  10. Kurzrock T., Weuster-Botz D. // Biotechnol. Lett. 2010. V. 32. № 3. P. 331–339 .
  11. Kumar R., Basak B., Jeon B.-H. // J. Clean. Prod. 2020. Vol. 277. №. 123954.
  12. Lin S.K.C.; Du C.; Blaga A.C. et al. // Green Chem. 2010. V. 12. № 4. P. 666.
  13. Alexandri M., Vlysidis A., Papapostolou H. et al. // Sep. Purif. Technol. 2019. V. 209. P. 666–675 .
  14. Fu L., Gao X., Yang Y. et al. // Sep. Purif. Technol. 2014. V. 127. P. 212–218 .
  15. SunY., Zhang S., Zhang X. et al. // Sep. Purif. Technol. 2018. V. 204. P. 133–140 .
  16. Xu J., Li Y., Gao, C. et al. Pat. CN № 103012106A, application filed by 27.11.2012: publication 03.04.2013.
  17. Chen G., Wang X., Lü T. Pat. CN № 103524327A, заявл 16.10.2013: application filed by 16.10.2013: publication 22.04.2014.
  18. Sadare O.O., Ejekwu O., Moshokoa M.F. et al. // Sustainability. 2021. V. 13. № 12. № 6794.
  19. Szczygiełda M., Antczak J., Prochaska K. // Sep. Purif. Technol. 2017. V. 181. P. 53–59 .
  20. Pan Sh.-Y., Liao Y.-L., Lin Y.-I, Tseng P.-Ch. // Bioresour. Technol. 2025. V. 430. №. 132549.
  21. Yazicigil Z., Oztekin Y. // Desalination. 2006. V. 190. № 1–3 . P. 71–78 .
  22. Belashova E.D., Pismenskaya N.D., Nikonenko V.V. et al. // J. Memb. Sci. 2017. V. 542. P. 177–185 .
  23. Martí-Calatayud M.C., Evdochenko E., Bär J. et al. // J. Memb. Sci. 2020. V. 595. №. 117592.
  24. Kozaderova O.A., Niftaliev S.I., Kim K.B. // Russ. J. Electrochem. 2018. V. 54. № 4. P. 363–367 .
  25. Zagorodnykh L.A., Bobreshova O.V., Kulintsov P.I., Aristov I.V. // Russ. J. Electrochem. 2005. V. 41. № 3. P. 275–279 .
  26. Yurchenko O.A., Solonchenko K.V., Pismenskaya N.D. // Membr. Membr. Technol. 2024. V. 6. № 6. P. 449–462 .
  27. Chandra A.E.B., Chattopadhyay S. // Chem. Eng. Res. Des. 2022. V. 178. P. 13–24 .
  28. Vásquez-Garzón M.L., Bonotto G., Marder L. et al. // Desalination. 2010. V. 263. № 1–3 . P. 118–121 .
  29. Zabolotskiy V.I., Bespalov A.V., Bondarev D.A. et al. // Polythematic Online Sci. J. Kuban State Agrar. Univ. (In Russ.). 2016. https://doi.org/10.21515/1990-4665-123-085
  30. Romanyuk N.A., Sharafan M.V., Achoh A.R. et al. // Sorbtsionnye i khromatograficheskie protsessy. (In Russ.). 2024. V. 24. № 6. P. 847–857 .
  31. Apelblat A. // J. Mol. Liq. 2002. V. 95. № 2. P. 99–145 .
  32. Titorova V.D., Mareev S.A., Gorobchenko A.D. et. al. // J. Memb. Sci. 2021. V. 624. №. 119036.
  33. Zabolotsky V.I., Achoh A.R., Lebedev K.A., Melnikov S.S. // J. Memb. Sci. 2020. V. 608. №. 118152.
  34. Liu J.G., Luo, G.S., Pan S., Wang J.D. // Chem. Eng. Process. Process Intensif. 2004. V. 43. № 1. P. 43–47 .
  35. Belova E.I., Lopatkova G.Yu. Pismenskaya N.D. et al. // J. Phys. Chem. B. 2006. V. 110. № 27. P. 13458–13469.
  36. Pismenskaya N., Laktionov E., Nikonenko V. et al. // J. Memb. Sci. 2001. V. 181. P. 185–179 .
  37. Franck-Lacaze L., Sistat Ph., Huguet P.J. // J. Memb. Sci. 2009. V. 326. P. 650–658 .
  38. Kozaderova O.A., Kalinina S.A., Morgacheva E.A., Niftaliev S.I. // Sorbtsionnye i khromatograficheskie protsessy (In Russ.). 2021. V. 21. № 3. P. 317–325 .
  39. Bondarev D.A., Samoilenko A.A., Mel’nikov S.S. // Membr. Membr. Technol. 2024. V. 6. № 3. P. 171–180 .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).