Selection of Anion Exchange Membranes for Optimization of Electrodialytic Extraction of Tartrates from Aqueous Solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The challenge of extracting organic acids using membrane technologies highlights the critical issue of reducing production costs and improving environmental efficiency in food and medical industries. Organic acids play a key role in manufacturing a wide range of products. Electrodialysis (ED) has established itself as a highly efficient, environmentally friendly, and economical extraction method, particularly for tartrates. During extensive testing focused on extracting tartrates from solutions via electrodialysis, a comparative study of three types of ion-exchange membranes was conducted: ASE, CJMA-3, and MA-41P. Results showed significant differences in efficiency and energy consumption among these membranes. Data were obtained in NaxH(2–x)T solution with pH 3.0, characterized by the maximum molar fraction of monovalent tartrate anions. It was demonstrated that the ASE membrane exhibits inferior mass transfer characteristics and higher energy consumption during the electrodialytic extraction of tartrates compared to the CJMA-3 membrane, despite having the highest experimental limiting current values. The MA-41P membrane, in turn, demonstrates high mechanical strength, resistance to damage, and extended service life. However, its efficiency in tartrate extraction over the same electrodialysis period proved lower than that of the CJMA-3 membrane. Thus, CJMA-3 is preferable for ED processing of tartrate-containing solutions.

Sobre autores

O. Yurchenko

Kuban State University

Email: olesia93rus@mail.ru
149 Stavropol str., Krasnodar, 350040, Russia

K. Brizhan

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

N. Pismenskaya

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

Bibliografia

  1. Jiang C., Wang Y., Xu T. // Membrane Technologies for Biorefining. London: Academic Press, 2016. P. 135.
  2. Igliński B., Kiełkowska U., Piechota G. // Clean Technol. Environ. Policy. 2022. V. 24. № 7. P. 2061.
  3. Hülber-Beyer É., Bélafi-Bakó K., Nemestóthy N. // Chem. Pap. 2021. V. 75. № 10. P. 5223.
  4. Mancini E., Mansouri S.S., Gernaey K.V., Luo J., Pinelo M. // Crit. Rev. Environ. Sci. Technol. 2019. V. 50. № 18. P. 1829.
  5. Kim N., Jeon J., Chen R., Su X. // Chem. Eng. Res. Des. 2022. V. 178. P. 267.
  6. Kurzrock T., Weuster-Botz D. // Biotechnol. Lett. 2010. V. 32. P. 331.
  7. Nam H.-G., Park C., Jo S.-H., Suh Y.-W., Mun S. // Process Biochem. 2012. V. 47. № 12. P. 2418.
  8. López-Garzón C.S., Straathof A.J.J. // Biotechnol. Adv. 2014. V. 32. № 5. P. 873.
  9. Демина Н.Г., Румянцева Н.Ф., Антонова С.В., Лукьянов Д.А., Федоров А.С., Бондаренко П.Ю., Гулевич А.Ю., Дебабов В.Г. // Биотехнология. 2015. № 6. С. 52.
  10. Zhao J., He G., Liu G., Pan F., Wu H., Jin W., Jiang Z. // Prog. Polym. Sci. 2018. V. 80. P. 125.
  11. Fehér J., Cervenanský I., Václavík L., Markoš J. // Sep. Purif. Technol. 2020. V. 235. P. 116222.
  12. Huang C., Xu T., Zhang Y., Xue Y., Chen G. // J. Membr. Sci. 2007. V. 288. № 1–2. P. 1.
  13. Yang H.K., Moon S.H. // J. Chem. Technol. Biotechnol. 2010. V. 76. P. 169.
  14. Wang Q., Cheng G., Sun X., Jin B. // Process Biochem. 2006. V. 41. № 1. P. 152.
  15. Wang X., Wang Y., Zhang X., Xu T. // Bioresour. Technol. 2012. V. 125. P. 165.
  16. Sun X., Lu H., Wang J. // J. Clean. Prod. 2017. V. 143. P. 250.
  17. Igliński B., Piechota G., Iwański P. // Sustain. Chem. Eng. 2020. V. 1. P. 62.
  18. Lameloise M.-L., Lewandowski R. // J. Membr. Sci. 2012. V. 403–404. P. 196.
  19. Prochaska K., Woźniak-Budych M.J. // J. Membr. Sci. 2014. V. 469. P. 428.
  20. Ferrer J.S.J., Laborie S., Durand G., Rakib M. // J. Membr. Sci. 2006. V. 280. № 1–2. P. 509.
  21. Jaime-Ferrer J.S., Couallier E. // J. Membr. Sci. 2008. V. 325. № 2. P. 528.
  22. Wang Y., Zhang N., Huang C., Xu T. // J. Membr. Sci. 2011. V. 385–386. P. 226.
  23. Ttivedi G., Shah B., Adhikary S., Indusekhar V., Rangarajan R. // React. Funct. Polym. 1997. V. 32. № 2. P. 209.
  24. Liu X., Li Q., Jiang C., Lin X., Xu T. // J. Membr. Sci. 2015. V. 482. P. 76.
  25. Rottiers T., Van der Bruggen B., Pinoy L. // J. Ind. Eng. Chem. 2017. V. 54. P. 190.
  26. Liu G., Wu D., Chen G., Halim R., Liu J., Deng H. // Sep. Purif. Technol. 2021. V. 263. P. 118403.
  27. Zhang K., Wang M., Wang D., Gao C. // J. Membr. Sci. 2009. V. 341. № 1–2. P. 246.
  28. Rózsenberszki T., Komáromy P., Hülber-Beyer É., Bakonyi P., Nemestóthy N., Bélafi-Bakó K. // Chem. Eng. Res. Des. 2021. V. 175. P. 348.
  29. Wang Y., Jiang C., Bazinet L., Xu T. // Separation of Functional Molecules in Food by Membrane Technology. London: Academic Press, 2019. P. 349.
  30. Vera E., Ruales J., Dornier M., Sandeaux J., Persin F., Pourcelly G., Vaillant F., Reynes R. // J. Food Eng. 2003. V. 59. № 4. P. 361.
  31. Faucher M., Henaux L., Chaudron C., Mikhaylin S., Margni M., Bazinet L. // J. Food Eng. 2020. V. 273. P. 109802.
  32. Serre E., Rozoy E., Pedneault K., Lacour S., Bazinet L. // Sep. Purif. Technol. 2016. V. 163. P. 228.
  33. Comuzzo P., Battistutta F. // Red Wine Technology. London: Academic Press, 2019. P. 17.
  34. Pasechnaya E., Tsygurina K., Ponomar M., Chuprynina D., Nikonenko V., Pismenskaya N. // Membranes. 2023. V. 13. № 1. P. 84.
  35. El Rayess Y., Castro-Muñoz R., Cassano A. // Trends Food Sci. Technol. 2024. V. 147. P. 104453.
  36. Balster J., Punt I., Stamatialis D.F., Lammers H., Verver A.B., Wessling M. // J. Membr. Sci. 2007. V. 303. № 1–2. P. 213.
  37. Merkel A., Ashrafi A.M., Ečer J. // J. Membr. Sci. 2018. V. 555. P. 185.
  38. Nemati-Amirkolaii K., Romdhana H., Lameloise M.L. // Sustainability. 2019. V. 11. № 16. P. 4492.
  39. Vecino X., Reig M., Gibert O., Valderrama C., Cortina J.L. // ACS Sustain. Chem. Eng. 2020. V. 8. № 35. P. 13387.
  40. Conidi C., Cassano A., Caiazzo F., Drioli E. // J. Food Eng. 2017. V. 195. P. 1.
  41. Ghalloussi R., Garcia-Vasquez W., Chaabane L. // J. Membr. Sci. 2013. V. 436. P. 68.
  42. Wu-Tiu-Yen J., Lameloise M.L., Petit A., Lewandowski R., Broyart B., Fargues C. // Sep. Sci. Technol. 2020. V. 56. № 10. P. 1752.
  43. Fidaleo M., Ventriglia G. // Foods. 2022. V. 11. № 12. P. 1770.
  44. Chandra A., Chattopadhyay S. // Colloids Surf. A Physicochem. Eng. Asp. 2020. V. 589. P. 124395.
  45. Phukan R., Guttierez L., De Schepper W., Vanoppen M., Verbeken K., Raes K., Verliefde A., Cornelissen E. // Sep. Purif. Technol. 2023. V. 322. P. 124247.
  46. Laucirica G., Pérez-Mitta G., Toimil-Molares M.E., Trautmann C., Marmisollé W.A., Azzaroni O. // J. Phys. Chem. C. 2019. V. 123. № 47. P. 28997.
  47. Zhang Y., Pinoy L., Meesschaert B., Van der Brug- gen B. // AIChE J. 2011. V. 57. № 8. P. 2070.
  48. Wang Y., Zhang Z., Jiang C., Xu T. // Sep. Purif. Technol. 2016. V. 170. P. 353.
  49. Yan H., Wang Y., Xu T. // Proceedings of the 5th International Conference on Sustainable Chemical Production Process Engineering (SCPPE). 2019. P. 65.
  50. Pismenskaya N., Rybalkina O., Solonchenko K., Pasechnaya E., Sarapulova V., Wang Y., Jiang C., Xu T., Nikonenko V. // Polymers. 2023. V. 15. № 10. P. 2288.
  51. Монополярные мембраны. URL: http://azotom.ru/monopolyarnye-membrany/ (дата обращения: 01.013.2024).
  52. Kozaderova O.A., Kim K.B., Gadzhiyevа C.S., Niftaliev S.I. // J. Membr. Sci. 2020. V. 604. P. 118081.
  53. Васильева В.И., Мещерякова Е.Е., Фалина И.В., Кононенко Н.А., Бровкина М.А., Акберова Э.М. // Мембраны и мембранные технологии. 2023. Т. 13. № 3. С. 163.
  54. Berezina N.P., Timofeev S.V., Kononenko N.A. // J. Membr. Sci. 2002. V. 209. P. 509.
  55. Pismenskaya N.D., Rybalkina O.A., Kozmai A.E., Tsygurina K.A., Melnikova E.D., Nikonenko V.V. // J. Membr. Sci. 2020. V. 601. P. 117920.
  56. Titorova V.D., Mareev S.A., Gorobchenko A.D., Gil V.V., Nikonenko V.V., Sabbatovskii K.G., Pismenskaya N.D. // J. Membr. Sci. 2021. V. 624. P. 119036.
  57. Lide R. // CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2005.
  58. Sarapulova V., Nevakshenova E., Pismenskaya N., Dammak L., Nikonenko V. // J. Membr. Sci. 2015. V. 479. P. 28.
  59. Dukhin S.S. // Adv. Colloid Interface Sci. 1991. V. 35. P. 173.
  60. Maletzki F., Rosler H.-W., Staude E. // J. Membr. Sci. 1992. V. 71. № 1–2. P. 105.
  61. Martí-Calatayud M.C., Ruiz-García M., Pérez-Herranz V. // Sep. Purif. Technol. 2025. V. 354. P. 128951.
  62. Belashova E D., Pismenskaya N.D., Nikonenko V.V. // J. Membr. Sci. 2017. V. 542. P. 177–185.
  63. Гельферих Ф. М.: Изд-во Иностр. лит., 1962. С. 490.
  64. Gorobchenko A., Yurchenko O., Mareev S., Zhang C., Pismenskaya N., Nikonenko V. // J. Water Process Eng . 2024. V. 64. P. 105711.
  65. Rybalkina O.A., Sharafan M.V., Nikonenko V.V., Pismenskaya N.D. // J. Membr. Sci. 2022. V. 651. P. 120449.
  66. Pismenskaya N.D., Nikonenko V.V., Melnik N.A., Shevtsova K.A., Belova E.I., Pourcelly G., Cot D., Dammak L., Larchet C. // J. Phys. Chem. B. 2012. V. 116. № 7. P. 2145–2161.
  67. Рыбалкина О.А., Цыгурин К.А., Сарапулова В.В., Мареев С.А., Никоненко В.В., Письменская Н.Д. // Мембраны и мембранные технологии. 2019. Т. 9. № 2. С. 131–145.
  68. Pine S.H. // Organic Reactions. 2011. P. 403–464.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).