Nonholonomic mechanical systems on a plane with a variable slope

Capa

Citar

Texto integral

Resumo

This paper considers such nonholonomic mechanical systems as Chaplygin skate, inhomogeneous Chaplygin sleigh and Chaplygin sphere moving in the gravity field along an oscillating plane with a slope varying with the periodic law. By explicit integration of the equations of motion, analytical expressions for the velocities and trajectories of the contact point for Chaplygin skate and Chaplygin sleigh are obtained. Numerical parameters of the periodic law for the inclination angle change are found, such that the velocity of Chaplygin skate will be unbounded, that is, an acceleration will take place. In the case of inhomogeneous Chaplygin sleigh, on the contrary, numerical parameters of the periodic law of the inclination angle change are found, for which the sleigh velocity is bounded and there is no drift of the sleigh. For similar numerical parameters and initial conditions, when the sleigh moves along a horizontal or inclined plane with the constant slope, the velocity and trajectory of the contact point are unbounded, that is, there is a drift of the sleigh. A similar problem is solved for the Chaplygin sphere; its trajectories are constructed on the basis of numerical integration. The results are illustrated graphically. The control of the slope of the plane, depending on the angular momentum of the sphere, is proposed for discussion. Regardless of the initial conditions, such control can almost always prevent the drift of the sphere in one of the directions.

Sobre autores

Evgeniya Mikishanina

Steklov Mathematical Institute of Russian Academy of Sciences
Chuvash State University

Autor responsável pela correspondência
Email: evaeva_84@mail.ru
ORCID ID: 0000-0003-4408-1888

Ph.D.(Phys.-Math.),

Researcher, Department of Mechanics, 

associate professor, Department of Actuarial and Financial Mathematics

 

Rússia, 8 Gubkina st., Moscow 119991, Russia 15 Moskovskii av., Cheboksary 428015, Russia

Bibliografia

  1. A. V. Borisov, I. S. Mamaev, "The dynamics of a Chaplygin sleigh", J. Appl. Math. Mech., 73:2 (2009), 156–161. DOI: https://doi.org/10.1016/j.jappmathmech.2009.04.005
  2. I. A. Bizyaev, "A Chaplygin sleigh with a moving point mass", Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 27:4 (2017), 583–589 (In Russ.). DOI: https://doi.org/10.20537/vm170408
  3. A. V. Karapetyan, A. Y. Shamin, "On motion of Chaplygin sleigh on a horizontal plane with dry friction", Mechanics of Solids, 54:5 (2019), 632–637. DOI: https://doi.org/10.20537/nd190205
  4. S. A. Chaplygin, "On a ball’s rolling on a horizontal plane", Regul. Chaotic Dyn., 7:2 (2002), 131–148. DOI: https://doi.org/10.1070/RD2002v007n02ABEH000200
  5. A. A. Kilin, "The dynamics of Chaplygin ball: The qualitative and computer analysis", Regul. Chaotic Dyn., 6:3 (2001), 291–306. DOI: https://doi.org/10.1070/RD2001v006n03ABEH000178
  6. E. A. Mikishanina, "Dynamics of the Chaplygin sphere with additional constraint", Communications in Nonlinear Science and Numerical Simulation, 117 (2023), 106920. DOI: https://doi.org/10.1016/j.cnsns.2022.106920
  7. A. V. Borisov, I. S. Mamaev, "Chaplygin’s Ball Rolling Problem Is Hamiltonian", Math. Notes, 70:5 (2001), 720–723. DOI: https://doi.org/10.1023/A:1012995330780
  8. A.V. Borisov, A. O. Kazakov, I. R. Sataev, "Regular and chaotic attractors in nonholonomic Chaplygin top model", Nelin. dinam., 10:3 (2014), 361–380 (In Russ.), https://www.mathnet.ru/eng/nd450.
  9. A.V. Borisov, A. O. Kazakov, I. R. Sataev, "Spiral Chaos in the Nonholonomic Model of a Chaplygin Top", Regul. Chaotic Dyn., 21:7–8 (2016), 939–954. DOI: https://doi.org/10.1134/S1560354716070157
  10. A.V. Borisov, I. S. Mamaev, "Motion of Chaplygin ball on an inclined plane", Doklady Physics, 51:2 (2006), 73–76. DOI: https://doi.org/10.1134/S1028335806020078
  11. E. I. Kharlamova., "Rolling of the ball on an inclined plane", Prikl. Mat. Mekh., 22:4 (1958), 504–509 (In Russ.).
  12. A. V. Borisov, A. A. Kilin, I. S. Mamaev, "On the Hadamard–Hamel Problem and the Dynamics of Wheeled Vehicles", Regul. Chaotic Dyn., 20:6 (2015), 752–766. DOI: https://doi.org/10.1134/S1560354715060106
  13. A. V. Borisov, I. S. Mamaev, "An inhomogeneous Chaplygin sleigh", Regul. Chaotic Dyn., 22:4 (2017), 435–447. DOI: https://doi.org/10.1134/S1560354717040062
  14. Y. Rocard, Línstabilité en mécanique: Automobiles, avions, ponts suspendus, Masson, Paris, 1954.
  15. A. V. Borisov, A. A. Kilin, I. S. Mamaev, "The problem of drift and recurrence for the rolling Chaplygin ball", Regul. Chaotic Dyn., 18:6 (2013), 832–859. DOI: https://doi.org/10.1134/S1560354713060166

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Mikishanina E.A., 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).