Estimation of solutions of neutral type systems with two incommensurate delays

Capa

Citar

Texto integral

Resumo

This paper presents the algorithm for estimating solutions of differential- difference systems of neutral type with two incommensurate delays in the neutral part. It is worth mentioning an important assumption about the commutativity of matrices in the left-hand side of the system. The idea of the approach is to represent the system’s solutions in terms of initial functions and the fundamental matrix and then to construct an exponential estimate for this representation. At the first step, the system’s initial conditions are set. Next, the system is rewritten in an integral form and the delay operator is introduced. After recursive application of this operator to the right-hand side of obtained system, the system’s solutions are expressed via binomial coefficients, initial functions and the fundamental matrix. At the final step these expressions are used to make an exponential estimate of the solution. It is proved that the estimate of the fundamental matrix of the system also has an exponential form. In practice, the proposed method allows optimizing the control choice for neutral-type delay systems in sense of one of the crucial characteristics of the controlled systems, i.e. the overshoot value.

Sobre autores

Alexey Zhabko

Saint Petersburg State University

Email: a.zhabko@spbu.ru
ORCID ID: 0000-0002-6379-0682

D.Sc. (Phys. and Math.), Head of the Department of Control Theory

Rússia, Universitetsky av., 35, Saint Petersburg 198504, Russia

Diana Evtina

Saint Petersburg State University

Autor responsável pela correspondência
Email: diana.evtina@mail.ru
ORCID ID: 0009-0007-5417-606X

 Postgraduate Student, Department of Control Theory

Rússia, Universitetsky av., 35, Saint Petersburg 198504, Russia

Bibliografia

  1. V. L. Kharitonov, Time-delay systems: Lyapunov functionals and matrices, Basel: Birkhauser, 2013, 311 p.
  2. L. E. Elsgolts, Vvedenie v teoriyu differencial'nyh uravnenij s otklonyayushchimsya argumentom, Nauka, M., 1964 (In Russ.), 128 p.
  3. P. A. Velmisov, P. K. Macenko, Yu. A. Tamarova, "Application of equations with deviating argument to mathematical modeling of pressure measurement systems in gasliquid media", Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 26:4 (2024), 442–457 (In Russ.). doi: 10.15507/2079-6900.26.202404.442-457
  4. I. V. Lutoshkin, A. G. Chekmarev, "Development of a parameterization method for solvingoptimal control problems and development of a softwarepackage concept", Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 26:3 (2024), 260–279 (In Russ.). doi: 10.15507/2079-6900.26.202403.260-279
  5. V. L. Kharitonov, "Lyapunov functionals and Lyapunov matrices for neutral type timedelay systems: a single delay case", Int. J. Control, 78:11 (2005), 783–800.
  6. V. L. Kharitonov, S. Mondie, J. Collado, "Exponential estimates for neutral time-delay systems: An LMI approach", IEEE Transactions on Automatic Control, 50:5 (2005), 666–670.
  7. V. L. Kharitonov, "Lyapunov matrices for a class of neutral type time delay systems", IFAC Proceedings Volumes, 39:10 (2006), 24–29.
  8. V. L. Kharitonov, Exponential estimate for a simple neutral time delay system, Course of lectures given in St. Petersburg State University, 2012, 19 p.
  9. D. S. Evtina, A. P. Zhabko, "Issledovanie ustojchivosti sistem differencial'nyh uravnenij s zapazdyvaniem nejtral'nogo tipa", Materialy mezhdunarodnoj nauchnoj konferencii "Ufimskaya osennyaya matematicheskaya shkola", 2:1 (2024), 67–69 (In Russ.).
  10. R. Bellman, Teoriya ustojchivosti reshenij differencial'nyh uravnenij, M.: Izdatel'stvo inostrannoj literatury, 1954 (In Russ.), 216 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Zhabko A.P., Evtina D.S., 2025

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).