Peridynamics method for problems solve of solids destruction

Cover Page

Cite item

Full Text

Abstract

The article investigates the method of peridynamics, which is an alternative approach to solving destruction problems based on integral equations. It is assumed that particles in a continuum interact with each other at a finite distance, as in molecular dynamics. Damage is part of the theory at the level of two-particle interactions, so damage finding and destruction occurs when solving the equation of motion. During this work, bondbased and state-based peridynamics models of destruction used in the Sandia Laboratory were described and implemented within the framework of the MoDyS molecular dynamics software package. In the bond-based model, the defining relationship is the bond stiffness function, which corrects the force of particle-particle interaction and imposes a restriction on the use of the Poisson’s ratio. The state-based model generalizes the bond-based approach and may be applied to materials with any Poisson’s ratio. The relationship of both models is ascertained. Calculation convergence is demonstrated on the example of a one-dimensional elasticity problem. The possibility of using the implemented models for fracture problems is also shown.

About the authors

Dmitry A. Shishkanov

FSUE RFNC – VNIIEF

Email: dima.shishkanov.96@mail.ru
ORCID iD: 0000-0002-3063-4798

research laboratory mathematician

Russian Federation, 22 Yunosti St., Sarov 607182, Russia

Maxim V. Vetchinnikov

FSUE RFNC – VNIIEF

Email: vetchinnikov_max@mail.ru
ORCID iD: 0000-0003-0321-1738

Head of research laboratory

Russian Federation, 22 Yunosti St., Sarov 607182, Russia

Yuriy N. Deryugin

FSUE RFNC – VNIIEF

Author for correspondence.
Email: dyn1947@yandex.ru
ORCID iD: 0000-0002-3955-775X

Dr.Sci. (Phys.-Math.), Chief Researcher

Russian Federation, 22 Yunosti St., Sarov 607182, Russia

References

  1. S. A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces”, Journal of Mechanics and Physics of Solids, 48:1 (2000), 175–209. DOI: https://doi.org/10.1016/S0022-5096(99)00029-0
  2. Handbook of Peridynamic Modeling, ed. S. A. Siling, P. H. Geubelle, J. T. Foster, F. Bobaru, CRC Press by Taylor and Francis Group, LLC, New York, 2017 DOI: https://doi.org/10.1201/9781315373331, 586 p.
  3. E. Madenci, E. Oterkus, Peridynamic theory and its applications, 289, Springer, New York, 2014 DOI: https://doi.org/10.1007/978-1-4614-8465-3.
  4. S. A. Siling, E. Askari, “A meshfree method based on the peridynamic model of solid mechanics”, Computers and Structures, 83 (2005), 1526–1535. DOI: https://doi.org/10.1016/J.COMPSTRUC.2004.11.026
  5. D. Huang, C. Wang, G. Lu, P. Qiao, “An extended peridynamic approach for deformation and fracture analysis”, Engineering Fracture Mechanics, 141 (2015), 196–211. DOI: https://doi.org/10.1016/j.engfracmech.2015.04.036
  6. D. Huang, G. Lu, P. Qiao, “An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis”, International Journal of Mechanical Sciences, 8 (2015), 94–95. DOI: https://doi.org/10.1016/j.ijmecsci.2015.02.018
  7. S. A. Silling, M. Zimmermann, R. Abeyaratne, “Deformation of a peridynamic bar”, Journal of Elasticity, 17 (2003), 173–190. DOI: https://doi.org/10.1023/B:ELAS.0000029931.03844.4f
  8. F. Bobaru, M. Yabg, L. F. Alves, S. A. Siling, E. Askari, J. Xu, “Convergence, adaptive refinement, and scaling in 1D peridynamics”, International Journal for Numerical Methods in Engineering, 77 (2009), 852–877. DOI: https://doi.org/10.1002/nme.2439
  9. S. A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, “Peridynamic states and constitutive modeling”, Journal of Elasticity, 88 (2007), 151–184. DOI: https://doi.org/10.1007/s10659-007-9125-1
  10. P. Seleson, D.J. Littlewood, “Convergence studies in meshfree peridynamic simulations”, Computers & Mathematics with Applications, 71:11 (2016), 2432–2448. DOI: https://doi.org/10.1016/j.camwa.2015.12.021
  11. P. Seleson, M. Parks, “On the role of the influence function in the peridynamic theory”, International Journal for Multiscale Computational Engineering, 9:6 (2011), 689–706. DOI: https://doi.org/10.1615/IntJMultCompEng.2011002527
  12. P. Seleson, “Connecting peridynamic models and coupling local and nonlocal systems : presentation at Mini-workshop: Mathematical Analysis for Peridynamics”, 2011, 79 p.
  13. M. L. Parks, P. Seleson, S. J. Plimpton, R. B. Lehoucq, S. A. Siling, “Peridynamics with LAMMPS: A User Guide v0.2 Beta”, 2008, 28 p.
  14. A. N. Anisimov, S. A. Grushin, B. L. Voronin, S. V. Kopkin, A. M. Yerofeev, D. A. Demin, M. A. Demina, M. V. Zdorova, M. V. Vetchinnikov, N. S. Ericheva, N. O. Kovalenko, I. A. Kryuchkov, A. G. Kechin, V. A. Degtyarev, “Certificate of state registration of the computer program No. 2010614974. A complex of molecular dynamic
  15. modeling programs (MoDyS).”, 2010 (In Russ.).
  16. T. Qi, L. Shaofan, “Multiscale coupling of molecular dynamics and peridynamics”, Journal of the Mechanics and Physics of Solids, 95 (2016), 169–187. DOI: https://doi.org/10.1016/j.jmps.2016.05.032
  17. M. L. Parks, R. B. Lehoucq, S. J. Plimpton, S.A. Silling, “Implementing peridynamics within a molecular dynamics code”, Computer Physics Communications, 179:11 (2008), 777–783. DOI: https://doi.org/10.1016/j.cpc.2008.06.011
  18. A. M. John, S. A. Silling, D. J. Littlewood, “A position-aware linear solid constitutive model for peridynamics”, Journal of Mechanics of Materials and Structures, 10:5 (2015), 539–557. DOI: https://doi.org/10.2140/jomms.2015.10.539
  19. J.A. Mitchell, “On the ‘DSF’ and the ‘dreaded surface effect’ : presentation at Workshop on Nonlocal Damage and Failure”, 2012, 18 p.
  20. S. A. Silling, R. B. Lechoucq, “Convergence of peridynamics to classical elasticity theory”, Journal of Elasticity., 93 (2008), 13–37. DOI: https://doi.org/10.1007/s10659-008-9163-3
  21. J.F. Kalthoff, S. Winkler, “Failure mode transition at high rates of shear loading”, International Conference on Impact Loading and Dynamic Behavior of Materials, 1987, 185–195.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Shishkanov D.A., Vetchinnikov M.V., Deryugin Y.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).