Numerical simulation of selective laser melting by the SPH method

Cover Page

Cite item

Full Text

Abstract

Currently, additive manufacturing technologies develop actively. This requires creation of computational methods to describe physical processes occurring at the time of manufacturing. One of the methods used for the production of metal powder parts is the method of selective laser melting. This paper presents an SPH-based numerical technique for modeling the process of powder sintering under the influence of a laser beam. The flow of liquid formed as a result of melting is described by the Navier-Stokes equations. Pressure forces, viscous effects and surface forces at the interface are included in the force balance. The thermal state is determined from the energy conservation law, which takes into account thermal processes, volumetric absorption of laser radiation energy, convective heat exchange with the external environment and radiation. Phase transitions between solid and liquid phases are described in the framework of the generalized formulation of the Stefan problem. The calculation method is verified on tests specific to the class of problems under consideration. A comparison is made with the analytical solution, as well as with solutions obtained by other modifications of the SPH method, and with experimental data.

About the authors

Alexander N. Bykov

FSUE RFNC - VNIIEF

Email: ban3101@mail.ru

Ph. D. (Physics and Mathematics),  Chief researcher, Department of the Institute of Theoretical and Mathematical Physics

Russian Federation, 37 Mira Ave., Sarov, 607188, Russia

Marina N. Vishnyakova

FSUE RFNC - VNIIEF

Email: Marina.N.Vishnyakova@gmail.com
ORCID iD: 0000-0002-0488-518X

Ph. D. (Physics and Mathematics), Senior researcher, Department of the Institute of Theoretical and Mathematical Physics

Russian Federation, 37 Mira Ave., Sarov, 607188, Russia

Yuriy N. Deryugin

FSUE RFNC - VNIIEF

Author for correspondence.
Email: dyn1947@yandex.ru
ORCID iD: 0000-0002-3955-775X

D. Sci. (Physics and Mathematics), Chief Researcher, Department of the Institute of Theoretical and Mathematical Physics

Russian Federation, 37 Mira Ave., Sarov, 607188, Russia

Andrey B. Emelyanov

FSUE RFNC - VNIIEF

Email: abe75@yandex.ru
ORCID iD: 0000-0002-3549-3891

Senior researcher

Russian Federation, 37 Mira Ave., Sarov, 607188, Russia

Alexey A. Lazarev

FSUE RFNC - VNIIEF

Email: lazarev.alex94@gmail.com
ORCID iD: 0000-0002-0577-5732

Researcher

Russian Federation, 37 Mira Ave., Sarov, 607188, Russia

Sergey N. Polishchuk

FSUE RFNC - VNIIEF

Email: S.N.Polischuk@yandex.ru
ORCID iD: 0000-0002-7158-7393

Ph. D. (Physics and Mathematics),   Chief researcher

Russian Federation, Physics and Mathematics), (37 Mira Ave., Sarov, 607188, Russia

Christina V. Cherenkova

FSUE RFNC - VNIIEF

Email: cherenkova031996@mail.ru
ORCID iD: 0000-0003-0548-8861

Junior research

Russian Federation, 37 Mira Ave., Sarov, 607188, Russia

References

  1. I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer, New York, 2015, DOI: https://doi.org/10.1007/978-1-4939-2113-3, 498 p.
  2. I. V. Shishkovsky, Osnovy additivnykh tekhnologiy vysokogo razresheniya “[Fundamentals of high-resolution additive technologies]”, Peter, St. Petersburg, 2016 (In Russ.), 348 p.
  3. M. A. Russell, A. Souto-Iglesias, T. I. Zohdi, “Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method”, Computer Methods in Applied Mechanics and Engineering, 2018, no. 341, 163–187. DOI: https://doi.org/10.1016/j.cma.2018.06.033
  4. I. V. Savelyev, Kurs obshchey fiziki “[Course of general physics]”. Vol. I., Nauka, M., 1970 (In Russ.)
  5. A. A. Samarskiy, P. N. Vabishevich, Vychislitel’naya teploperedacha “[Computational heat transfer]”, «Librocom», M., 2009 (In Russ.), 784 p.
  6. B. M. Budak, E. N. Soloviev, A. B. Uspensky, “Raznostnyy metod so sglazhivaniem koeffitsientov dlya resheniya zadachi Stefana [Difference method with smoothing coefficients for solving the Stefan problem]”, Zh. Vychisl. Mat. Mat. Fiz., 5:5 (1965), 828-840 (In Russ.).
  7. R. A. Gingold, J. J. Monaghan, “Smoothed Particle Hydrodynamics: theory and application to non-spherical stars”, Monthly Notices of the Royal Astronomical Society, 181:3 (1977), 375-389. DOI: https://doi.org/10.1093/mnras/181.3.375
  8. L. Lucy, “A numerical approach to the testing of the fission hypothesis”, Astronom. J., 1977, no. 82, 1013. DOI: https://doi.org/10.1086/112164
  9. J. J. Monaghan, “Smoothed particle hydrodynamics”, Annual Review of Astronomy and Astrophysics, 30 (1992), 543-574. DOI: https://doi.org/10.1146/annurev.aa.30.090192.002551
  10. M. Ordoubadi, M. Yaghoubi, F. Yeganehdoust, “Surface tension simulation of free surface using smoothed particle hydrodynamics”, Sci. Iranica B., 24:4 (2017), 2019–2033. DOI: https://doi.org/10.24200/sci.2017.4291
  11. U. Karslou, D. Eger, Teploprovodnost’ tverdykh tel “[Thermal conductivity of solids]”, Nauka, M., 1964 (In Russ.), 488 p.
  12. A. N. Tikhonov, A. A. Samarskiy, Uravneniya matematicheskoy fiziki “[Equations of mathematical physics]”, Nauka, M., 1977 (In Russ.), 742 p.
  13. Y. Bao, L. Li, L. Shen, Ch. Lei, Y. Gan, “A Modified Smoothed Particle Hydrodynamics Approach for Modelling Dynamic Contact Angle Hysteresis”, 2018, arXiv: https://doi.org/10.48550/arXiv.1804.02770.
  14. My Ha Dao, Jing Lou, “Simulations of Laser Assisted Additive Manufacturing by Smoothed Particle Hydrodynamics”, Computer Methods in Applied Mechanics and Engineering, 373 (2021). DOI: https://doi.org/10.1016/j.cma.2020.113491
  15. X. He, P.W. Fuerschbach, T. DebRoy, “Heat transfer and fluid flow during laser spot welding of 304 stainless steel”, J. Phys. D: Appl. Phys., 36:12 (2013), 1388–1398. DOI: https://doi.org/10.1088/0022-3727/36/12/306
  16. M. Afrasiabi, C. Lüthi, M. Bambach, K. Wegener, “Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process”, Appl. Sci., 11:7 (2021), 2962. DOI: https://doi.org/10.3390/app110729

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bykov A.N., Vishnyakova M.N., Deryugin Y.N., Emelyanov A.B., Lazarev A.A., Polishchuk S.N., Cherenkova C.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).