The problems of the worst-case disturbances acting on multi-mass elastic system

Cover Page

Cite item

Full Text

Abstract

An analytical framework for synthesizing worst-case external disturbances for linear dynamical systems described by ordinary differential equations is presented in the paper. The study is conducted for three classical functional spaces $L_2, L_{\infty}, L_1$ over a fixed time interval, which corresponds to identifying disturbances with bounded energy, bounded amplitude, and bounded impulse, respectively. Linear elastic mechanical systems are chosen as a illustrative object of analysis, thus providing an intuitive interpretation of the results. A unified performance metric is introduced for quantitative assessment of solutions. This metrics is the ratio of a system's target output (e.g., maximum deviation) to the $L_p$-norm of the disturbance (i.e. the normalized system response). Explicit analytical expressions for the worst-case disturbances and their corresponding performance indices are derived. The interrelations between the indices obtained for different disturbance classes are examined. Numerical simulation results are provided for single- and multiple-degree-of-freedom systems, represented as chains of point masses interconnected by elastic and damping elements, and connected to a movable base.

About the authors

Polina P. Tkachenko

Sirius University of Science and Technology

Email: PTkachen@gmail.com
ORCID iD: 0000-0001-5132-234X

Research Assistant at the Department of «Mathematical robotics and artificial intelligence»

Russian Federation, 1 Olympic Ave., Sirius Federal Territory 354340, Russia

Dmitry V. Balandin

Sirius University of Science and Technology

Email: dbalandin@yandex.ru
ORCID iD: 0000-0001-7727-5924

Dr. Sci. (Phys.-Math.), Professor at the Department of «Mathematical robotics and artificial intelligence»

Russian Federation, 1 Olympic Ave., Sirius Federal Territory 354340, Russia

Tatiana V. Ryabikova

Sirius University of Science and Technology

Author for correspondence.
Email: tanya.dovid@gmail.com
ORCID iD: 0000-0003-0302-2064

PhD. Sci. (Phys.-Math.), Research Assistant at the Department of «Mathematical robotics and artificial intelligence»

Russian Federation, 1 Olympic Ave., Sirius Federal Territory 354340, Russia

References

  1. B. V. Bulgakov, ''On the accumulation of disturbances in linear oscillatory systems with constant parameters'', DAN SSSR, 51:5 (1946), 339–342 (In Russ.).
  2. V.V. Aleksandrov, ''[K zadache Bulgakova o nakoplenii vozmushchenii]'', Dokl. AN SSSR. Ser. Kibernetika i teoriya regulirovaniya, 186:3 (1969), 526–528 (In Russ.).
  3. V.N. Zhermolenko, ''On the maximum deviation of a linear system'', Autom Remote Control, 73:7 (2012), 1117–1125. doi: 10.1134/S0005117912070016
  4. G. Zames, Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses'', IEEE Transactions on Automatic Control, 26:2 (1981), 301–320. doi: 10.1109/TAC.1981.1102603
  5. J. C. Doyle, K. Glover, P.P. Khargonekar, B.A. Francis, ''State-space solutions to standard H₂ and H∞ control problems'', IEEE Transactions on Automatic Control, 34:8 (1989), 831--847. doi: 10.1109/9.29425
  6. P.P. Khargonekar, K.M. Nagpal, K.R. Poolla, ''H∞ -Control with Transients'', SIAM Journal of Control and Optimization, 29:6 (1991), 1373–1393. doi: 10.1137/0329070
  7. W.W. Lu, G. J. Balas, E. B. Lee, ''A Variational Approach to H∞ Control with Transients'', IEEE Transactions on Automatic Control, 44 (1999), 1875–1879.
  8. Y. K. Foo, ''H∞ Control with Initial Conditions'', IEEE Trans. Circuits and Systems, 53:9 (2006), 867–871. doi: 10.1109/TCSII.2006.881807
  9. A. Iannelli, P. Seiler, A. Marcos, ''Worst-Case Disturbances for Time-Varying Systems with Application to Flexible Aircraft'', Journal of Guidance, Control, and Dynamics, 42:6 (2019), 1261–1271. doi: 10.2514/1.G004023
  10. D. V. Balandin, M. M. Kogan, ''LMI-based Hinfty -optimal control with transients'', International Journal of Control, 83:8 (2010), 1664–1673. doi: 10.1080/00207179.2010.487222
  11. D. V. Balandin, R. S. Biryukov, M. M. Kogan, ''Optimal control of maximum deviations of outputs of a linear nonstationary system on a finite time interval'', Autom Remote Control, 80:10 (2019), 1783–1802. doi: 10.1134/S0005117919100023
  12. D. V. Balandin, M. M. Kogan, ''Multi-objective Generalized H₂-Control'', Automatica, 99:8 (2019), 317–322. doi: 10.1016/j.automatica.2018.10.006

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Tkachenko P.P., Balandin D.V., Ryabikova T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).