Mathematical study of medicine diffusion from swelling chitosan film

Cover Page

Cite item

Full Text

Abstract

One of modern dosage forms is a medicine-saturated organic film: after putting this film onto a skin the medicine releases thus providing healing effect. Present article concerns films based on chitosan and containing amikacinum or cefazolinum. The most important characteristic of such film is rate of medicine release described by diffusion coefficient. To find it the film is placed in water and the average medicine concentration in the film is measured at different time moments. Two problems arise here. First, the film properties change because of its swelling. Second, diffusion is not the only process that takes place inside the film. To deal with these effects, authors suppose diffusion coefficient to be time-variable and complete the mathematical model with ODE describing detachment of medicine molecules from high-molecular matrix. All the equations in the model are solved analytically, so average medicine concentration in the film is known function of time. Thus, to solve stated inverse problem it is sufficient to find unknown scalar parameters of known functions using least-squares framework. Expressions arising in the solution are complicated so non-gradient methods are preferrable for optimization. Applying described procedure to experimental data leads to a good accuracy and the results may be explained from physicochemical point of view. In particular, the film swelling doesn’t influence release rate. In fact, the diffusion rate during first hours of experiment is large, and the main part of the medicine is released before swelling starts to play important role.

About the authors

Alexey O. Syromyasov

National Research Mordovia State University

Email: syal1@yandex.ru
ORCID iD: 0000-0001-6520-0204

Ph.D. (Phys.-Math.), Associate Professor, Department of Applied Mathematics, Differential Equations and Theoretical Mechanics

Russian Federation, 68/1 Bolshevistskaya St., Saransk 430005, Russia

Anzhela S. Shurshina

Bashkir State University

Email: anzhela_murzagil@mail.ru
ORCID iD: 0000-0001-6737-7265

 Ph.D. (Chemistry), Associate Professor, Department of High Molecular Compounds and General Chemical Technology

Russian Federation, 32 Zaki Validi St., Ufa 450076, Russia

Dmitry V. Galkin

«Coder» LLC

Author for correspondence.
Email: dmga13@gmail.com
ORCID iD: 0000-0003-2174-6138

Senior Programmer

Russian Federation, 84V Sovetskaya St., Saransk 430005, Russia

References

  1. G. I. Nazarenko, I. Yu. Sugurova, S. P. Glyantsev, [Wound, bandage, patient: a guide for doctors and nurses], Meditsina Publ., Moscow, 2002 (In Russ.), 472 p.
  2. Y. M. Qin, “Advanced wound dressings”, Journal of the Textile Institute, 92:1 (2001), 127–138. DOI: https://doi.org/10.1080/00405000108659563
  3. E. P. Feofilova, D. V. Nemtsev, V. M. Tereshina, V. P. Kozlov, “[Polyaminosaccharides of mycelial fungi: new biotechnological use and practical implications]”, Applied Biochemistry and Microbiology, 32:5 (1996), 437–445 (In Russ.).
  4. L. V. Gorovoi, V. N. Kosyakov, “[Sorption properties of chitin and its derivatives]”, [Chitin and chitosan: production, properties and application], Moscow, 2002, 217–246 (In Russ.).
  5. T. P. Alekseeva A. A. Rakhmetova, O. A. Bogoslovskaya, I. P. Olkhovskaya, A. N. Levov, A. V. Ilina, V. P. Varlamov, T. A. Baytukalov, N. N. Glushchenko, “Wound healing potential of chitosan and N-sulfosuccinoyl chitosan derivatives”, Biology Bulletin, 37:4 (2010), 339–345. DOI: https://doi.org/10.1134/S1062359010040023
  6. E. I. Kulish, A. S. Shurshina, S. V. Kolesov, “Specific transport properties of medicinal chitosan films”, Polymer Science. Series A, 56:3 (2014), 289–295. DOI: https://doi.org/10.1134/S0965545X14030080
  7. U. Conte, P. Colombo, A. Gazzaniga, A. La Manna, “Swelling-activated drug delivery systems”, Biomaterials, 9 (1988), 489–493. DOI: https://doi.org/10.1016/0142-9612(88)90043-9
  8. P. Costa, L. M. Sousa Lobo, “Modeling and comparison of dissolution profiles”, European Journal of Pharmaceutical Sciences, 13 (2003), 123–133. DOI: https://doi.org/10.1016/s0928-0987(01)00095-1
  9. I. Katzhendler, A. Hoffman, A. Goldberger, M. Grieman M., “Modeling of drug release from erodible tablets”, Journal of Pharmaceutical Sciences, 86:1 (1997), 110–115. DOI: https://doi.org/10.1021/js9600538
  10. P. L. Ritger, N. A. Peppas, “A simple equation for description of solute release. I. Fickian and Non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs”, Journal of Controlled Release, 5 (1987), 23–26. DOI: https://doi.org/10.1016/0168-3659(87)90034-4
  11. P. L. Ritger, N. A. Peppas, “A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices”, Journal of Controlled Release, 5 (1987), 37–42. DOI: https://doi.org/10.1016/0168-3659(87)90035-6
  12. S. Siepmann, N. A. Peppas, “Modeling of drug release from delivery systems based on
  13. hydroxypropylmethylcellulose (HPMC)”, Advanced Drug Delivery Reviews, 48 (2001), 139–157. DOI: https://doi.org/10.1016/s0169-409x(01)00112-0
  14. A. O. Syromyasov, A. S. Shurshina, D. V. Galkin, “[Model of diffusion of medicine that is bonded inside an organic film]”, [Mathematical modeling, numerical methods and software complexes named after E. V. Voskresensky], Proceedings of the VIII International Scientific Youth School-Seminar (Saransk, 2018), 150–155 (In Russ.).
  15. A. O. Syromyasov, A. S. Shurshina, D. V. Galkin, “[Diffusion of partly bonded medium from chitosan film with constant characteristics]”, Vestnik Bashkirskogo universiteta, 23:4 (2018), 1100–1104 (In Russ.).
  16. D. Hömberg, S. Lu, M. Yamamoto, “Uniqueness for an inverse problem for a nonlinear parabolic system with an integral term by one-point Dirichlet data”, Journal of Differential Equations, 266:11 (2019), 7525–7544. DOI:https://doi.org/10.1016/j.jde.2018.12.004
  17. Y. Y. Chen, J. I. Frankel, M. Keyhani, “A new front surface heat flux calibration for a 1-D nonlinear thermal system with a time-varying back boundary condition”, Journal of Engineering Mathematics, 105 (2017), 157–187. DOI: https://doi.org/10.1007/S10665-016-9888-0
  18. A. F. Albu, V. I. Zubov, “Identification of thermal conductivity coefficient using a given temperature field”, Computational Mathematics and Mathematical Physics, 58:10 (2018), 1585–1599. DOI: https://doi.org/10.1134/S0965542518100032
  19. I. V. Boikov, V. A. Ryazantsev, “[On the approximate method for determination of heat conduction coefficient]”, Zhurnal SVMO, 21:2 (2019), 149–161 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.21.201902.149-163
  20. S. I. Kabanikhin, M. A. Shishlenin, “[Recovering time-dependent coefficients in dynamical inverse problems from nonlocal data]”, Marchukovskiye Nauchnyye Chteniya –2017], Proceedings of International Scientific Conference, Novosibirsk, 2017, 364–369 (in Russ.)
  21. T. V. Smotrina, “[State of water and relaxation processes in chitosan films]”, Butlerovskiye Soobshcheniya, 29:2 (2012), 98–101 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Syromyasov A.O., Shurshina A.S., Galkin D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).