Determination of the average electro-thermophoretic force acting on a system of polarizable particles in an inhomogeneously heated fluid

Cover Page

Cite item

Full Text

Abstract

The average force acting on the system of polarizing particles from the electric field in a non-uniformly heated dielectric liquid is determined. The case of pair interactions in the system is examined. To find the force acting on the particles, the interaction of two particles in a liquid is modelled in the presence of a given temperature gradient and the electric field strength far from the particles. The dependence of the particle permittivity on temperature is taken into account. The resulting expression for the force acting on two particles has such a power-law dependence on the distance between the particles, that allows to carry out the direct averaging procedure for a system of particles located in an infinite volume of liquid. When determining the average force, the probability density function of a continuous random variable is used, and the vector connecting the centers of particles plays the role of this variable. The differential equation for finding the probability density function is derived from two conditions. First, the pairs of particles are preserved in the space of all their possible configurations. Second, each pair of particles moves like a point with a speed equal to the speed of their relative motion. The resulting equation in the case under consideration has a set of solutions. Basing on the physical analysis of the problem, the choice of the probability density function is proposed, which allows one to determine the average electro-thermophoretic force acting in such a system with an accuracy up to the second degree of the volume concentration of particles.

About the authors

Sergey I. Martynov

Surgut State University

Author for correspondence.
Email: martynovsi@mail.ru
ORCID iD: 0000-0001-6420-3315

Dr.Sci. (Phys.-Math.), Chief Researcher

Russian Federation, 1 Lenina Av., Surgut 628412, Russia

References

  1. W. Gao, B. E.-FY. de Avila, L. Zhang, J. Wang, “Targeting and isolation of cancer cells using micro/nanomotors”, Adv. Drug Deliv. Rev., 125 (2018), 94–101. DOI: https://doi.org/10.1016/j.addr.2017.09.002
  2. M. Medina-Sanchez, H. Haifeng Xu, O. G. Schmidt, “Micro- and nano-motors: the new generation of drug carriers”, Therapeutic Delivery, 9 (2018), 303–316. DOI: https://doi.org/10.4155/tde-2017-0113
  3. M. T. Alsaba, M. F. Al Dushaishi, A. K. Abbas, “A comprehensive review of nanoparticles applications in the oil and gas industry”, Journal of Petroleum Exploration and Production Technology, 10 (2020), 1389–1399. DOI: https://doi.org/10.1007/s13202-019-00825-z
  4. M. N. Agista, K. Guo, Z. Yu, “A state-of-the-art review of nanoparticles application in petroleum with a focus on enhanced oil recovery”, Appl. Sci., 8:6 (2018). DOI: https://doi.org/10.3390/app8060871
  5. M. Y. Rezk, N. K. Allam, “Impact of Nanotechnology on Enhanced Oil Recovery: A Mini-Review”, Ind. Eng. Chem. Res., 58 (2019), 16287–16295. DOI: https://doi.org/10.1021/acs.iecr.9b03693
  6. M. F. Fakoya, S. N. Shah, “Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles”, Petroleum, 3:34 (2017), 391–405. DOI: https://doi.org/10.1016/j.petlm.2017.03.001
  7. S. I. Martynov, L. Yu. Tkach, “Model of hydrodynamic mechanism of the movement of nanomotors”, Mathematical Models and Computer Simulations, 1:4 (2021), 684–691. DOI: https://doi.org/10.1134/S2070048221040153
  8. J. C. Maxwell, Electricity and Magnetism, Clarendon Press, Oxford, 1892, 420 p.
  9. J.W. Rayleigh, “On the influence of obstacles arrenged in rectengular order upon the properties of a medium”, Phil. Meg., 34:241 (1892), 481–491.
  10. H. C. Bakhvalov, “The averaged characteristics of bodies with a periodic structure”, Dokl. USSR Academy of Sciences, 218:5 (1974), 1046–1048 (In Russ.).
  11. A. L. Berdichevsky, “Spatial averaging of periodic structures ”, Dokl. USSR Academy of Sciences, 1975, №3, 565–567 (In Russ.).
  12. S. I. Martynov, “On the force acting on particles in an inhomogeneously heated polarizing liquid”, Bulletin SUSU MMCS, 14:1 (2021.), 42–51 (In Russ.). DOI: https://doi.org/10.14529/mmp210104
  13. G. Batchelor, J. Green, “The bulk stress in a suspension of spheres to order c²”, Rheologica Acta, 13 (1974), 890–890.
  14. S. I. Martynov, “Hydrodynamic interaction of particles”, Proceedings of the Russian Academy of Sciences. Mechanics of fluid and gas, 1998, no. 2, 112–119 (In Russ.)
  15. I. P. Boriskina, A. O. Syromyasov, “Pair-wise MHD-interaction of rigid spheres in longitudinal creeping flow”, Zhuznal SVMO, 21:1 (2019), 78–88 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.21.201901.78-88

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Martynov S.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).