On the Minkowski dimension of some invariant sets of dynamical systems

Cover Page

Cite item

Full Text

Abstract

It is well known that a fractal set is not a submanifold of the ambient space. However, fractals arise as invariant subsets even in infinitely smooth conditions and the Minkowski dimension serves in this case as a characteristic of complexity of this scale. For example, when the equilibrium state during the Andronov-Hopf bifurcation losses its stability, the closure of the non-singular trajectory is a parametrically defined curve of the fractal type. In this work the fractal dimension of such curves is calculated. In addition, special two-parameter family of functions is studied such that Minkowski dimension of their graphs varies from1 to 2. The obtained result allows us to implement a regular dynamic system with an isolated hyperbolic point such that the closure of two-dimensional stable manifold of this point may have Minkowski dimension greater than 2. To calculate the graph dimension, the segment of the argument defining the graph is split into two parts. The dimension of the first part of the graph can be estimated from above by direct calculation of the corresponding curve’s length. The upper estimation of the other part’s dimension is provided by means of the area of rectangle containing this curve. The lower estimation of the Minkowski dimension is based on calculating the cardinality of ε-distinguishable set of graph points.

About the authors

Sergey V. Zelik

National Research University «Higher School of Economics»

Email: s.zelik@surrey.ac.uk
ORCID iD: 0000-0002-4884-5040

Chief Researcher at the International Laboratory of Dynamic Systems and Applications

Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, Russia

Olga V. Pochinka

National Research University «Higher School of Economics»

Email: olga-pochinka@yandex.ru
ORCID iD: 0000-0002-6587-5305

D. Sci. (Phys.-Math.), Head of the International Laboratory of Dynamic Systems and Applications

Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, Russia

Andrey A. Yagilev

National Research University «Higher School of Economics»

Author for correspondence.
Email: agilevandrej@gmail.com
ORCID iD: 0009-0008-5088-8075

Student of the Faculty of Informatics, Mathematics and Computer Science

Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, Russia

References

  1. P. S. Alexandrov, B.A. Pasynkov, Vvedenie v teoriyu razmernosti [Introduction to the theory of dimension], Nauka, Moscow, 1973 (In Russ), 575 p.
  2. A.A. Andronov, E.A. Leontovich, "Some cases of dependence of limit cycles on a parameter", Science notes of Gorky University, 5 (1937), 3-24 (In Russ).
  3. A.A. Andronov, A.A. Witt, S.E. Khaykin, Teoriya kolebaniy [Theory of oscillations], Nauka, Moscow, 1937 (In Russ), 568 p.
  4. E. Hopf, "Abzweigung einer periodishen Losung von einer stationaren Losung eines Differential systems", Ber. Math.-Phys. Sachsische Academie der Wissenschaften, Leipzig, 94 (1942), 1-22.
  5. S.V. Zelik, "Attractors. Then and now", Russian Math. Surveys, 78:4 (2023), 635-677 (In Russ).
  6. C. Bonatti, V. Grines, "Knots as topological invariants for gradient-like diffeomorphisms of the sphere S3", Journal of dynamical and control systems, 6:4 (2000), 579-602.
  7. T.V. Medvedev, O.V. Pochinka, "The wild Fox-Artin arc in invariant sets of dynamical systems", Dynamical Systems, 33 (2018), 660-666.
  8. M. Fernandez-Martinez, M.A. Sanchez-Granero, "A new fractal dimension for curves based on fractal structures", Topology Applications, 203 (2016), 108-124.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Zelik S.V., Pochinka O.V., Yagilev A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).