Mathematical Models of Joint Calculation of Electric and Thermal Fields in Electrochemical Systems (in Electrolytes)
- Authors: Lubyshev F.V.1, Bolotnov A.M.1, Fairuzov M.E.1
-
Affiliations:
- «Ufa University of Science and Technology»
- Issue: Vol 25, No 3 (2023)
- Pages: 150-158
- Section: Mathematics
- Submitted: 19.12.2025
- Accepted: 19.12.2025
- Published: 24.12.2025
- URL: https://ogarev-online.ru/2079-6900/article/view/359981
- DOI: https://doi.org/10.15507/2079-6900.25.202303.150-158
- ID: 359981
Cite item
Full Text
Abstract
This paper studies mathematical models for a joint calculation of electric and thermal fields in electrochemical systems (in electrolytes). As is known, passing of electric current through an electrolyte is accompanied by release of Joule heat. The consequence of temperature redistribution in an electrochemical system is a change in the main physical and chemical parameters: viscosity and density of the conductive medium, specific electrical and thermal conductivity, heat transfer coefficient, etc. Taking into account in mathematical models the mutual influence of thermal and electric fields is of particular importance in the technologies of electrolysis of non-ferrous metals (primarily in the industrial production of aluminum) that is accompanied by high-temperature conditions and intensive electrical heat and mass transfer. The processes of electrolytic-plasma removal of coatings, polishing of parts and plasma-electrolytic oxidation attract special attention from the machine-building industry due to the possibility of qualitative improvement of surface properties. In the article correctness of statements of nonlinear models are investigated. The question of unique solvability of the system is explored and a priori estimates of the generalized solution in the Sobolev norms are established. Also, the system of nonlinear partial derivative equations considered in the paper can describe a mathematical model for the joint calculation of electric and thermal fields in solid conductors of electricity and heat.
About the authors
Fedor V. Lubyshev
«Ufa University of Science and Technology»
Email: maxam721@mail.ru
ORCID iD: 0000-0002-3279-4293
Dr.Sci. (Phys.-Math.), Professor, Department of Information Technology and Computer Mathematics
Russian Federation, 32 Zaki Validi St., Ufa 450076, RussiaAnatoly M. Bolotnov
«Ufa University of Science and Technology»
Email: bolotnovam@mail.ru
ORCID iD: 0009-0004-3309-2885
Dr.Sci. (Phys.-Math.), Professor, Department of Information Technology and Computer Mathematics
Russian Federation, 32 Zaki Validi St., Ufa 450076, RussiaMahmut E. Fairuzov
«Ufa University of Science and Technology»
Author for correspondence.
Email: fairuzovme@mail.ru
ORCID iD: 0000-0002-9118-660X
Ph. D. (Phys.-Math.), Associate Professor, Department of Information Technology and Computer Mathematics
Russian Federation, 32 Zaki Validi St., Ufa 450076, RussiaReferences
- N.P. Savenkova, S.V. Anpilov, R.N. Kuz’min, O.G. Provorova, T.V. Piskazhova, "Dvuhfaznaya trekhmernaya model’ alyuminievogo elektrolizera", Prikladnaya fizika, 2012, no. 3, 111–115 (In Russ.).
- N.P. Savenkova, A.YU. Mokin, N. S. Udovichenko, A.A. P’yanyh, "Matematicheskoe modelirovanie MGD-stabil’nosti alyuminievogo elektrolizera", Zhurnal Sibirskogo federalnogo universiteta. Seriya: Tekhnika i tekhnologii, 13:2 (2020), 243–253 (In Russ.). DOI: https://doi.org/10.17516/1999-494X-0211
- V.R. Mukaeva, E.V. Parfenov, "Matematicheskoe modelirovanie processa elektrolitnoplazmennogo polirovaniya", Vestnik UGATU, 16:5 (2012), 67–73 (In Russ.).
- A.G. Rakoch, V.V. Hohlov, V.A. Bautin, N.A. Lebedeva, Yu.V. Magurova, I.V. Bardin, "Model’nye predstavleniya o mekhanizme mikrodugovogo oksidirovaniya metallicheskih materialov i upravlenie etim processom", Zashchita metallov, 42:2 (2006), 173–184 (In Russ.).
- V.T. Ivanov, F.V Lubyshev, A. S. Derkach, V. S. Merkur’ev, Metody sovmestnyh raschetov elektricheskih i teplovyh polej v elektrohimicheskih sistemah, Nauka Publ., Moscow, 1978 (In Russ.), 104 p.
- A.A. Samarskij, R.D. Lazarov, V. L. Makarov, [Difference schemes for differential equations with generalized solutions], Vysshaya shkola Publ., Moscow, 1987 (In Russ.), 296 p.
- O.A. Ladyzhenskaya, [Boundary value problems of mathematical physics], Nauka Publ., Moscow, 1973 (In Russ.), 408 p.
- A.A. Samarskij, P.N. Vabishchevich, [Computational heat transfer], Librokom Publ., M., 2009 (In Russ.), 784 p.
- J. Francu, "Monotone operators. A survey directed to applications to differential equations", Aplikace Matematiky, 35:4 (1990), 257–301.
Supplementary files


