The Krzyz conjecture and convex univalent functions
- Авторлар: Stupin D.L.1
-
Мекемелер:
- Tver State University
- Шығарылым: Том 27, № 1 (2025)
- Беттер: 81-96
- Бөлім: Mathematics
- ##submission.datePublished##: 26.02.2025
- URL: https://ogarev-online.ru/2079-6900/article/view/298158
- DOI: https://doi.org/10.15507/2079-6900.27.202501.81-96
- ID: 298158
Дәйексөз келтіру
Толық мәтін
Аннотация
We obtained the sharp estimates of the moduli of the initial Taylor coefficients for functions $f$ of the class $B$ of bounded nonvanishing functions in the unit circle. Two types of estimates are obtained: one for ``large'' values of $|f(0)|$ and another one for ``small'' values of $|f(0)|$. The first type of estimates is asymptotic in the sense that it applies to an increasing number of initial coefficients as $|f(0)|$ increases. Similarly, the second type of estimates is asymptotic in the sense that it applies to an increasing number of initial coefficients as $|f(0)|$ decreases. Both types of estimates are deduced using methods of subordinate function theory and the Caratheodory-Toeplitz theorem for the Caratheodory class. This became possible due to the relation we found between the coefficients of convex univalent functions (class $S^0$) and the coefficients of the majorizing functions in the studied subclasses of the class $B$. The bounds for the applicability of the method are provided depending on $|f(0)|$ and on the coefficient number. The obtained results are applied to the theory of Laguerre polynomials. These results are compared with the previously known ones. The methods outlined here can be applied to arbitrary classes of subordinate functions.
Авторлар туралы
Denis Stupin
Tver State University
Хат алмасуға жауапты Автор.
Email: dstupin@mail.ru
ORCID iD: 0000-0002-9183-9543
Ph. D. in Phys. and Math., Associate Professor of the Mathematical Analysis Department
Әдебиет тізімі
- J. G. Krzyz, "Coefficient problem for bounded nonvanishing functions", Ann. Polon. Math., 70 (1968), 314.
- J. A. Hummel, S. Scheinberg, L. A. Zalcman, "A coefficient problem for bounded nonvanishing functions", J.d'Analyse Mathematique, 31 (1977), 169–190. doi: 10.1007/BF02813302.
- W. Szapiel, "A new approach to the Krzyz conjecture", Ann. Univ. M. CurieSklodowska. Sec. A, 48 (1994), 169–192.
- N. Samaris, "A proof of Krzyz's conjecture for the fifth coefficient", Compl. Var. Theory and Appl., 48 (2003), 48–82. doi: 10.1080/0278107031000152616.
- D. L. Stupin, "One method of estimating moduli of Taylor coefficients of subordinate functions", Voronezh State University Reports. Physics. Mathematics, 2024, no. 2, 71–84.
- D. L. Stupin, "A new method of estimation of modules of initial Taylor coefficients on the class of bounded nonvanishing functions", Russian Universities Reports. Mathematics, 29:145 (2024), 98–120. doi: 10.20310/2686-9667-2024-29-145-98-120 (In Russ.).
- W. Rogosinski, "On the coefficients of subordinate functions", Proc. London Math. Soc., 48 (1943), 48–82. doi: 10.1112/plms/s2-48.1.48.
- D. L. Stupin, "The coefficient problem for bounded functions and its applications", Russian Universities Reports. Mathematics, 28:143 (2023), 277--297. doi: 10.20310/2686-9667-2023-28-143-277-297 (In Russ.).
- D. L. Stupin, "The sharp estimates of all initial taylor coefficients in the Krzyz problem", Application of Functional Analysis in Approximation Theory, 2010, 52–60.
- D. L. Stupin, "The sharp estimates of all initial taylor coefficients in the Krzyz's problem", Cornell University Library, 2011. doi: 10.48550/arXiv.1104.3984.
- D. L. Stupin, Kompleksnyy analiz i prilozheniya: Proceedings of the VI Petrozavodsk International Conference, Petrozavodsk, 2012.
- I. A. Aleksandrov, Conformal Mappings of Simply Connected and Multiply Connected Domains, Tomsk University Press, Tomsk, 1976, 156 p.
- I. M. Galperin, "Some Estimates for Functions Bounded in the Unit Disk", Russian Mathematical Surveys, 20:1(121) (1965), 197–202.
- E. Lindelof, "Memorie sur certaines inegalites dans la theorie des fonctions monogenes et sur quelques properietes nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel", Acta Soc. Sci. Fenn., 35:7 (1909), 1–35.
- J. E. Littlewood, Lectures on the theory of functions, Oxford university press, 1947, 251 p.
- R. Peretz, "Applications of subordination theory to the class of bounded nonvanishing functions", Compl. Var., 17:3-4 (1992), 213–222. DOI: https://doi.org/10.1080/17476939208814514.
- C. Caratheodory, "Uber die Variabilitatsbereich des Fourierschen Konstanten von Positiv Harmonischen Funktion", Rendiconti Circ. Mat., 32 (1911), 193–217. doi: 10.1007/BF03014795.
- D. L. Stupin, "Coefficient problem for functions mapping a circle into a generalized circle and the Caratheodory-Fejer problem", Application of Functional Analysis in Approximation Theory, 2012, 45–74 (In Russ.).
- Z. Lewandowski, J. Szynal, "An upper bound for the Laguerre polynomials", J. Comp. Appl. Math., 99 (1998), 529–533. doi: 10.1016/S0377-0427(98)00181-2.
- G. Schober, Univalent Functions – Selected Topics, Springer-Verlag, 1975.
- S. V. Romanova, "Asymptotic estimates of linear functionals for bounded functions that do not take a zero value'', Izvestiya vuzov. Math., 2002, no. 11, 83–85 (In Russ.).
- D. V. Prokhorov, S. V. Romanova, "Local extremal problems for bounded analytic functions without zeros", Izvestiya RAN, Seriya matematicheskaya, 70:4 (2006), 209–224. doi: 10.4213/im564 (In Russ.).
Қосымша файлдар


