Prospects of exogenous inositols in maintaining of skin, hair and nails condition: A review

Cover Page

Cite item

Full Text

Abstract

Myoinositol (MI) and D-chiroinositol (DCI), used in the therapy of menstrual disorders, polycystic ovarian syndrome (PCOS), hirsutism, acne, gestational diabetes, and other diseases, are required for intracellular signal transduction from insulin and other hormone receptors. Clinical practice shows that, for instance, MI and DCI in the treatment of PCOS improve the condition of skin, hair, and nails. These effects of MI and DCI are related to the normalization of insulin signaling and support of differentiation and growth of various skin cell types (keratinocytes, fibroblasts, epitheliocytes, etc.). The effects of MI and DCI on the skin and its appendages, including in wound healing, can be enhanced by manganese, which provides an antioxidant effect and improves the connective tissue matrix of the skin, and folic acid, which is involved in amino acid metabolism, proliferation, and differentiation of dividing cells.

About the authors

Olga A. Gromova

Federal Research Center “Informatics and Management”

Author for correspondence.
Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-7663-710X

D. Sci. (Med.), Prof.

Russian Federation, Moscow

Ivan Yu. Torshin

Federal Research Center “Informatics and Management”

Email: tiy135@ccas.ru
ORCID iD: 0000-0002-2659-7998

Cand. Sci. (Chem.), Cand. Sci. (Phys.-Math.)

Russian Federation, Moscow

Nana K. Tetruashvili

Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology

Email: n_tetruashvili@oparina4.ru
ORCID iD: 0000-0002-9201-2281

D. Sci. (Med.)

Russian Federation, Moscow

References

  1. Громова О.А., Торшин И.Ю. Микронутриенты и репродуктивное здоровье. Руководство. 2-е издание. М.: ГЭОТАР-Медиа, 2022, 832 c. [Gromova OA, Torshin IYu. Micronutrients and reproductive health. Management. 2nd edition. Moscow: GEOTAR-Media, 2022, 832 p. (in Russian)].
  2. Лиманова О.А., Громова О.А., Торшин И.Ю., и др. Систематический анализ молекулярно-физиологических эффектов мио-инозитола: данные молекулярной биологии, экспериментальной и клинической медицины. Эффективная фармакотерапия. 2013;28:32-41 [Limanova OA, Gromova OA, Torshin IYu, et al. Systematic analysis of molecular mechanisms and physiological effects of myo-inositol: findings of molecular biology, experimental and clinical medicine. Effective pharmacotherapy. 2013;28:32-41 (in Russian)].
  3. Claxson A, Morris C, Blake D, et al. The anti-inflammatory effects of D-myo-inositol-1.2.6-trisphosphate (PP56) on animal models of inflammation. Agents Actions. 1990;29(1-2):68-70. doi: 10.1007/BF01964724
  4. Catolla-cavalcanti A. Effect of inositol on cicatrization time of burns. Minerva Med. 1955;46(80):838-40.
  5. Plascencia Gómez A, Vega Memije ME, Torres Tamayo M, Rodríguez Carreón AA. Skin disorders in overweight and obese patients and relationship with insulin. Actas Dermosifiliogr. 2014;105(2):178-85. doi: 10.1016/j.ad.2013.09.008
  6. Hrynyk M, Neufeld RJ. Insulin and wound healing. Burns. 2014;40(8):1433-46. doi: 10.1016/j.burns.2014.03.020
  7. Liu Y, Petreaca M, Yao M, Martins-Green M. Cell and molecular mechanisms of keratinocyte function stimulated by insulin during wound healing. BMC Cell Biol. 2009;10:1. doi: 10.1186/1471-2121-10-1
  8. Chen X, Liu Y, Zhang X. Topical insulin application improves healing by regulating the wound inflammatory response. Wound Repair Regen. 2012;20(3):425-34. doi: 10.1111/j.1524-475X.2012.00792.x
  9. Gauglitz GG, Toliver-Kinsky TE, Williams FN, et al. Insulin increases resistance to burn wound infection-associated sepsis. Crit Care Med. 2010;38(1):202-8. doi: 10.1097/CCM.0b013e3181b43236
  10. Tuvdendorj D, Zhang XJ, Chinkes DL, et al. Intensive insulin treatment increases donor site wound protein synthesis in burn patients. Surgery. 2011;149(4):512-8. doi: 10.1016/j.surg.2010.10.021
  11. Otranto M, Nascimento AP, Monte-Alto-Costa A. Insulin resistance impairs cutaneous wound healing in mice. Wound Repair Regen. 2013;21(3):464-72. doi: 10.1111/wrr.12042
  12. Громова О.А., Торшин И.Ю., Уварова Е.В., и др. Систематический анализ биологических ролей и фармакологических свойств D-хироинозитола. Гинекология. 2020;22(3):21-8 [Gromova OA, Torshin IYu, Uvarova EV, et al. Systematic analysis of the biological roles and pharmacological properties of D-chiro-inositol. Gynecology. 2020;22(3):21-8 (in Russian)]. doi: 10.26442/20795696.2020.3.200210
  13. Baillargeon JP, Iuorno MJ, Apridonidze T, Nestler JE. Uncoupling between insulin and release of a D-chiro-inositol-containing inositolphosphoglycan mediator of insulin action in obese women with polycystic ovary syndrome. Metab Syndr Relat Disord. 2010;8(2):127-36. doi: 10.1089/met.2009.0052
  14. Croze ML, Vella RE, Pillon NJ, et al. Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice. J Nutr Biochem. 2013;24(2):457-66. doi: 10.1016/j.jnutbio.2012.01.008
  15. Wang JM, Qiu Y, Yang ZQ, et al. Inositol-Requiring Enzyme 1 Facilitates Diabetic Wound Healing Through Modulating MicroRNAs. Diabetes. 2017;66(1):177-92. doi: 10.2337/db16-0052
  16. Rezvani O, Shabbak E, Aslani A, et al. A randomized, double-blind, placebo-controlled trial to determine the effects of topical insulin on wound healing. Ostomy Wound Manage. 2009;55(8):22-8.
  17. Januszewski M, Issat T, Jakimiuk AA, Santor-Zaczynska M. Metabolic and hormonal effects of a combined Myo-inositol and d-chiro-inositol therapy on patients with polycystic ovary syndrome. Ginekol Pol. 2019;90(1):7-10. doi: 10.5603/GP.2019.0002
  18. Nestler JE, Jakubowicz DJ, de Vargas AF, et al. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab. 1998;83(6):2001-5. doi: 10.1210/jcem.83.6.4886
  19. Munir I, Yen HW, Geller DH, et al. Insulin augmentation of 17alpha-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase-1/2 in human ovarian theca cells. Endocrinology. 2004;145(1):175-83. doi: 10.1210/en.2003-0329
  20. Zacchè MM, Caputo L, Filippis S, et al. Efficacy of myo-inositol in the treatment of cutaneous disorders in young women with polycystic ovary syndrome. Gynecol Endocrinol. 2009;25(8):508-13. doi: 10.1080/09513590903015544
  21. Costantino D, Minozzi G, Minozzi E, Guaraldi C. Metabolic and hormonal effects of myo-inositol in women with polycystic ovary syndrome: a double-blind trial. Eur Rev Med Pharmacol Sci. 2009;13(2):105-10.
  22. Giordano D, Corrado F, Santamaria A, et al. Effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome: a perspective, randomized, placebo-controlled study. Menopause. 2011;18(1):102-4. doi: 10.1097/gme.0b013e3181e8e1b1
  23. Gordon PR, Mawhinney TP, Gilchrest BA. Inositol is a required nutrient for keratinocyte growth. J Cell Physiol. 1988;135(3):416-24. doi: 10.1002/jcp.1041350308
  24. Goren I, Müller E, Schiefelbein D, et al. Akt1 controls insulin-driven VEGF biosynthesis from keratinocytes: implications for normal and diabetes-impaired skin repair in mice. J Invest Dermatol. 2009;129(3):752-64. doi: 10.1038/jid.2008.230
  25. Zhao M, Song B, Pu J, et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 2006;442(7101):457-60. doi: 10.1038/nature04925
  26. Slominski A, Zbytek B, Zmijewski M, et al. Corticotropin releasing hormone and the skin. Front Biosci. 2006;11:2230-48. doi: 10.2741/1966
  27. Zbytek B, Slominski AT. Corticotropin-releasing hormone induces keratinocyte differentiation in the adult human epidermis. J Cell Physiol. 2005;203(1):118-26. doi: 10.1002/jcp.20209
  28. Ashrafpour H, Huang N, Neligan PC, et al. Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. Am J Physiol Heart Circ Physiol. 2004;286(3):H946-54. doi: 10.1152/ajpheart.00901.2003
  29. Lo Vasco VR, Leopizzi M, Chiappetta C, et al. Expression of phosphoinositide-specific phospholipase C enzymes in human skin fibroblasts. Connect Tissue Res. 2013;54(1):1-4. doi: 10.3109/03008207.2012.712584
  30. Ehrlich HP, Diez T. Role for gap junctional intercellular communications in wound repair. Wound Repair Regen. 2003;11(6):481-9. doi: 10.1046/j.1524-475x.2003.11616.x
  31. Tarnow P, Cassuto J, Jönsson A, et al. Effects of D-myo-Inositol-1,2,6-triphosphate on eicosanoid formation in burned skin. J Surg Res. 1996;62(1):1-4. doi: 10.1006/jsre.1996.0163
  32. Okuda Y, Sawada T, Mizutani M, et al. Restoration of myo-inositol uptake by eicosapentaenoic acid in human skin fibroblasts cultured in high-glucose medium. Life Sci. 1995;57(5):PL71-4. doi: 10.1016/0024-3205(95)00287-g
  33. Buscà R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13(2):60-9. doi: 10.1034/j.1600-0749.2000.130203.x
  34. Bazan HE, King WD, Rossowska M. Metabolism of phosphoinositides and inositol polyphosphates in rabbit corneal epithelium. Curr Eye Res. 1985;4(7):793-801. doi: 10.3109/02713688509020036
  35. Sekulic A, Kim SY, Hostetter G, et al. Loss of inositol polyphosphate 5-phosphatase is an early event in development of cutaneous squamous cell carcinoma. Cancer Prev Res (Phila). 2010;3(10):1277-83. doi: 10.1158/1940-6207.CAPR-10-0058
  36. Tarnow P, Jönsson A, Rimbäck G, Cassuto J. Increased dermal perfusion after skin burn injury by D-myo-inositol-1,2,6-trisphosphate. Burns. 1996;22(5):363-8. doi: 10.1016/0305-4179(95)00173-5
  37. Soto X, Li J, Lea R, et al. Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly. Proc Natl Acad Sci U S A. 2013;110(27):11029-34. doi: 10.1073/pnas.1217308110
  38. Wang C, Lu S, Li J, et al. Effects of dietary myo-inositol on growth, antioxidative capacity, and nonspecific immunity in skin mucus of taimen Hucho taimen fry. Fish Physiol Biochem. 2020;46(3):1011-8. doi: 10.1007/s10695-020-00766-z
  39. Ma J, Feng S, Ai D, Liu Y. D-Pinitol Ameliorates Imiquimod-Induced PsoriasisLike Skin Inflammation in a Mouse Model via the NF-κB Pathway. J Environ Pathol Toxicol Oncol. 2019;38(3):285-95. doi: 10.1615/JEnvironPatholToxicolOncol.2019030782
  40. Kimura M. Function and disease in manganese. Nihon Rinsho. 2016;74(7):1186-91.
  41. Громова О.А., Андреева Е.Н., Торшин И.Ю., и др. Системно-биологический анализ ролей марганца в акушерстве и гинекологии: репродуктивное здоровье женщины, регуляция менструального цикла и профилактика пороков развития плода. Вопросы гинекологии, акушерства и перинатологии. 2020;19(1):103-13 [Gromova OA, Andreeva EN, Torshin IYu, et al. A systemic biological analysis of the role of manganese in obstetrics and gynaecology: women’s reproductive health, menstrual cycle regulation and prevention of fetal malformations. Vopr ginekol akus perinatol (Gynecology, Obstetrics and Perinatology). 2020;19(1):103-13 (in Russian)]. doi: 10.20953/1726-1678-2020-1-103-113
  42. Керимкулова Н.В., Никифорова Н.В., Владимирова И.С., и др. Влияние недифференцированной дисплазии соединительной ткани на исходы беременности и родов. комплексное обследование беременных с дисплазией соединительной ткани с использованием методов интеллектуального анализа данных. Земский врач. 2013;2(19):34-8 [Kerimkulova NV, Nikiforova NV, Vladimirova IS, et al. Influence of undifferentiated connective tissue dysplasia on the outcomes of pregnancy and childbirth. comprehensive examination of pregnant women with connective tissue dysplasia using data mining methods. Country doctor. 2013;2(19):34-8 (in Russian)].
  43. Керимкулова Н.В., Серов В.Н., Никифорова Н.В., и др. Влияние недифференцированной дисплазии соединительной ткани на исходы беременности и родов: клинические аспекты, морфологические и иммуногистохимические особенности плаценты. Земский врач. 2013;3(20):28-31 [Kerimkulova NV, Serov VN, Nikiforova NV, et al. The influence of undifferentiated connective tissue dysplasia on the outcomes of pregnancy and childbirth: clinical aspects, morphological and immunohistochemical features of the placenta. Country doctor. 2013;3(20):28-31 (in Russian)].
  44. Treiber N, Maity P, Singh K, et al. The role of manganese superoxide dismutase in skin aging. Dermatoendocrinol. 2012;4(3):232-5. doi: 10.4161/derm.21819
  45. Parat MO, Richard MJ, Leccia MT, et al. Does manganese protect cultured human skin fibroblasts against oxidative injury by UVA, dithranol and hydrogen peroxide? Free Radic Res. 1995;23(4):339-51. doi: 10.3109/10715769509065255
  46. Tenaud I, Sainte-Marie I, Jumbou O, et al. In vitro modulation of keratinocyte wound healing integrins by zinc, copper and manganese. Br J Dermatol. 1999;140(1):26-34. doi: 10.1046/j.1365-2133.1999.02603.x
  47. Chung BY, Kim HO, Park CW, et al. Relationships of Serum Homocysteine, Vitamin B12, and Folic Acid Levels with Papulopustular Rosacea Severity: A Case-Control Study. Biomed Res Int. 2022;2022:5479626. doi: 10.1155/2022/5479626
  48. Steluti J, Miranda AM, De Carli E, et al. Unmetabolized folic acid is associated with TNF-α, IL-1β and IL-12 concentrations in a population exposed to mandatory food fortification with folic acid: a cross-sectional population-based study in Sao Paulo, Brazil. Eur J Nutr. 2021;60(2):1071-9. doi: 10.1007/s00394-020-02307-z
  49. Zhao M, Zhou J, Chen YH, et al. Folic Acid Promotes Wound Healing in Diabetic Mice by Suppression of Oxidative Stress. J Nutr Sci Vitaminol (Tokyo). 2018;64(1):26-33. doi: 10.3177/jnsv.64.26
  50. Khan S, Rahman SZ, Ahad A. Local drug delivery of folic acid promotes oral mucosal wound healing. J Dent Sci. 2021;16(1):532-3. doi: 10.1016/j.jds.2020.07.001
  51. Boykin JV Jr, Hoke GD, Driscoll CR, Dharmaraj BS. High-dose folic acid and its effect on early stage diabetic foot ulcer wound healing. Wound Repair Regen. 2020;28(4):517-25. doi: 10.1111/wrr.12804
  52. Fischer F, Achterberg V, März A, et al. Folic acid and creatine improve the firmness of human skin in vivo. J Cosmet Dermatol. 2011;10(1):15-23. doi: 10.1111/j.1473-2165.2010.00543.x
  53. Blackshaw S, Sawa A, Sharp AH, et al. Type 3 inositol 1,4,5-trisphosphate receptor modulates cell death. FASEB J. 2000;14(10):1375-9. doi: 10.1096/fj.14.10.1375
  54. Sato-Miyaoka M, Hisatsune C, Ebisui E, et al. Regulation of hair shedding by the type 3 IP3 receptor. J Invest Dermatol. 2012;132(9):2137-47. doi: 10.1038/jid.2012.141

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Insulin receptor signaling cascades involved in skin repair during wound healing.

Download (172KB)
3. Fig. 2. Topical insulin stimulates wound healing: a — typical images of wounds treated with 30 µl saline (control) or 0.03 IU of insulin in 30 µl saline; b — the use of insulin significantly increases the rate of wound surface closure (p<0,05).

Download (147KB)
4. Fig. 3. MI-dependent activation by insulin of the Rac1 signaling protein that stimulates keratinocyte survival in cell culture. Cells were treated with 10-7 M insulin for 3 or 5 min. Insulin stimulates the translocation of Rac1 protein across the membrane (blue spots) and the membrane undulation of migrating cells (arrows).

Download (171KB)
5. Fig. 4. Localization of the active form of AKT kinase in regenerating skin. Two major phosphorylated (i.e. activated by MI) forms of kinase: pAkt(Ser-473) and pAkt(Thr-308). Antibody staining, scale bar 50 mm; gt – granulation tissue; he – hyperproliferative epithelium; sc – superficial crust.

Download (342KB)
6. Fig. 5. Electrotaxis of keratinocytes is performed via the PI3Kγ protein (Pik3cg gene): a – the injury causes lateral electric fields directed toward the center of the wound (red arrow), resulting from collapse of the local transepithelial potential difference (V). The black arrows indicate the dimensions and directions of the currents; b, c – disruption of keratinocyte electrotaxis. The red lines and blue arrows represent the trajectories and directions of cell movement. Pik3cg+/+ – normal, Pik3cg-/- – gene deletion; d–f – disruption of electrotaxis when the polarity of the electric field changes. When the field polarity is reversed, keratinocytes are removed from the wound area. In the case of gene deletion, there is no pronounced change in the movement direction.

Download (279KB)
7. Fig. 6. Eicosanoid levels in skin cells when exposed to IF3, indomethacin or saline (*p<0.05; **p<0.01).

Download (64KB)
8. Fig. 7. The enzyme Itpkb is involved in the propagation of the Ca2+ wave necessary for wound healing. The scale bar is 20 µm; the asterisks indicate the location of the wounds. Deletion of the Itpkb gene impairs Ca2+ wave propagation. Examples of Ca2+ wave propagation: damage to a control tissue sample (top), damage to a tissue sample from an animal with Itpkb deletion (center), and damage to a tissue sample from an animal with Itpkb deletion with 0.5 μmol/L IF4 added (bottom).

Download (334KB)
9. Fig. 8. Upregulation of the IP3R3 receptor in rapidly renewing tissues: a – IP3R3 staining in small intestine epithelial cells. Black arrows indicate IP3R3 staining; blue arrows indicate no IP3R3 staining; b – IP3R3 staining is clearly visible in the hair follicle.

Download (238KB)
10. Fig. 9. Hair cycle abnormalities in experimental deletion of the Itpr3 gene: a – side view, 5 weeks; b – hair morphology (bar 50 mm), more loose fibers in case of deletion; c, d – dorsal view, 8 weeks and 6 months; e – skin structure abnormalities, C – tail side, R – skull side; f – outer and inner sides of the skin in the Itpr3-/- deletion, with the red line indicating the boundary of the alopecia area; g – hematoxylin-eosin staining of the sagittal section of the dorsal skin at Itpr3-/- deletion.

Download (245KB)
11. Fig. 10. Cytoskeletal abnormalities in the Itpr3 gene deletion in hair follicles: a – the root parts of many hairs in the telogen phase are covered by a serrated cuticle (asterisks) and are mixed with thicker anagen hairs covered by a smooth cuticle; b – normal hair follicle, * – hair, S – sebaceous glands; c – thin hair roots are quite rare (asterisks), hair channels are occupied by single hairs in anagen phase (thick arrows) or mixed hairs in anagen and telogen phases (thin arrows); d – keratin foliating (arrows) in gene deletion; e – hair follicle in gene deletion.

Download (210KB)
12. Fig. 11. Synergism of MI/DСI and Mn in maintaining of skin, hair and nails condition.

Download (267KB)

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».