Using of neural networks to search for errors of patient's positioning on chest X-rays

Capa

Citar

Texto integral

Resumo

The paper presents the results of the application of transfer learning of deep convolutional neural networks for the task of searching for chest X-rays with errors of patient styling and positioning. Evaluated neural network architectures: InceptionV3, Xception, ResNet152V2, InceptionResnetV2, DenseNet201, VGG16, VGG19, MobileNetV2, NASNetLarge. For training and testing we used chest X-rays from open datasets and the unified radiological information service of the city of Moscow. All the models obtained had diagnostic accuracy metrics above 95., while models based on the ResNet152V2, DenseNet201, VGG16, MobileNetV2 architectures had statistically significantly better metrics than other models. The best absolute values of metrics were shown by the ResNet152V2 model (AUC =0.999 , sensitivity=0.987, specificity=0.988, accuracy=0.988, F1 score = 0.988). The MobileNetV2 model showed the best processing speed of one study ($67.8 pm5.0$ ms). The widespread use of the algorithms we have obtained can facilitate the creation of large databases of high-quality medical images, as well as optimize quality control when performing chest X-ray examinations.

Sobre autores

Alexander Borisov

Pirogov Russian National Research Medical University; Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Autor responsável pela correspondência
Email: aleksandrborisov10650@gmail.com
ORCID ID: 0000-0003-4036-5883

Yuri Vasiliev

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Email: VasilevYA1@zdrav.mos.ru
ORCID ID: 0000-0002-0208-5218

Anton Vladzimirsky

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Email: VladzimirskijAV@zdrav.mos.ru
ORCID ID: 0000-0002-2990-7736

Olga Omelyanskaya

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Email: OmelyanskayaOV@zdrav.mos.ru
ORCID ID: 0000-0002-0245-4431

Serafim Serafim

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Email: SemenovSS3@zdrav.mos.ru
ORCID ID: 0000-0003-2585-0864

Kirill Arzamasov

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Email: ArzamasovKM@zdrav.mos.ru
ORCID ID: 0000-0001-7786-0349

Bibliografia

  1. Lampignano J., Bontrager K. L.. Textbook of Radiographic Positioning and Related Anatomy, 8th edition, Elsevier Mosby, St. Louis (Mo.), 2014, ISBN 978-0323083881, 848 pp.
  2. Broder J.. “Imaging the chest: the chest radiograph”, Diagnostic Imaging for the Emergency Physician, chapter 5, Elsevier, 2011, ISBN 978-1-4160-6113-7, pp. 185–296.
  3. Wang J., Li Zh., Pu L., Zhang K., Liu X., Zhou B.. “Research and application of orthotopic DR chest radiograph quality control system based on artificial intelligence”, Journal of Biomedical Engineering, 37:1 (2020), pp. 158–168.
  4. Морозов С. П., Кузьмина Е. С., Ледихова Н. В., Владзимирский А. В., Трофименко И. А., Мокиенко О. А., Панина Е. В., Андрейченко А. Е., Омелянская О. В., Гомболевский В. А., Полищук Н. С., Шулькин И. М., Решетников Р. В.. «Мобилизация научно-практического потенциала службы лучевой диагностики г. Москвы в пандемию COVID-19», Digital Diagnostics, 1:1 (2020), с. 5–11.
  5. Морозов С. П., Ледихова Н. В., Панина Е. В., Владзимирский А. В., Фомичева Е. П.. «Качество работы рентгенолаборантов в условиях дистанционного взаимодействия с референс-центром лучевой диагностики с применением телемедицинских технологий», Национальное здравоохранение, 2:2 (2021), с. 36–46.
  6. van Leeuwen K. G., de Rooij M., Schalekamp S., van Ginneken B., Rutten M. J. C. M.. “How does artificial intelligence in radiology improve efficiency and health outcomes?” Pediatr. Radiol., 52:11 (2022), pp. 2087–2093.
  7. Willis Ch. E., Nishino T. K., Wells J. R., Ai H. A., Wilson J. M., Samei E.. “Automated quality control assessment of clinical chest images”, Med. Phys., 45:10 (2018), pp. 4377–4391.
  8. Miotto R., Wang F., Wang Sh., Jiang X., Dudley J. T.. “Deep learning for healthcare: review, opportunities and challenges”, Brief Bioinform., 19:6 (2018), pp. 1236–1246.
  9. Usman M., Zia T., Tariq A.. “Analyzing transfer learning of vision transformers for interpreting chest radiography”, J. Digit. Imaging, 35:6 (2022), pp. 1445–1462.
  10. Kim H. E., Cosa-Linan A., Santhanam N., Jannesari M., Maros M. E., Ganslandt T.. “Transfer learning for medical image classification: a literature review”, BMC Med. Imaging, 22 (2022), 69, 13 pp.
  11. Szegedy Ch., Vanhoucke V., Ioffe S., Shlens J., Wojna Z.. “Rethinking the inception architecture for computer vision”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV, USA, 27–30 June 2016), 2016, pp. 2818–2826.
  12. Chollet F.. “Xception: deep learning with depthwise separable convolutions”, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI, USA, 21–26 July 2017), 2017, pp. 1800–1807.
  13. He K., Zhang X., Ren S., Sun J.. “Identity mappings in deep residual networks”, Computer Vision – ECCV 2016 (Amsterdam, The Netherlands, October 11–14, 2016), Lecture Notes in Computer Science, vol. 9908, eds. Leibe B., Matas J., Sebe N., Welling M., Springer, Cham, 2016, ISBN 978-3-319-46493-0, pp. 630–645.
  14. Szegedy Ch., Ioffe S., Vanhoucke V., Alemi A.. “Inception-v4, inception-ResNet and the impact of residual connections on learning” (San Francisco, California, 2017), Proceedings of the AAAI Conference on Artificial Intelligence, 31:1, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence AAAI 2017, pp. 4278–4284.
  15. Huang G., Liu Z., Van Der Maaten L., Weinberger K. Q.. “Densely connected convolutional networks”, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017, 2017, ISBN 978-1-5386-0457-1, pp. 2261–2269.
  16. Liu S., Deng W.. “Very deep convolutional neural network based image classification using small training sample size”, 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR) (Kuala Lumpur, Malaysia, 03–06 November 2015), 2015, pp. 730–734.
  17. Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L.-C.. “MobileNetV2: inverted residuals and linear bottlenecks”, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT, USA, 18–23 June 2018), 2018, pp. 4510–4520.
  18. Zoph B., Vasudevan V., Shlens J., Le Q. V.. “Learning transferable architectures for scalable image recognition”, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT, USA, 18–23 June 2018), 2018, pp. 8697–8710.
  19. Морозов С. П., Владзимирский А. В., Кляшторный В. Г., Андрейченко А. Е., Кульберг Н. С., Гомболевский В. А.. Клинические испытания программного обеспечения на основе интеллектуальных технологий (лучевая диагностика), М., 2019, 34 с.
  20. Kanjanasurat I., Tenghongsakul K., Purahong B., Lasakul A.. “CNN–RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images”, Sensors (Basel), 23:3 (2023), 1356, 12 pp.
  21. Baccouche A., Garcia-Zapirain B., Elmaghraby A. S.. “An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks”, Sci. Rep., 12:1 (2022), 12259, 17 pp.
  22. Nguyen T., Do T. H., Pham Q. D.. “A deep learning based system for Covid-19 positive cases detection using chest X-ray images”, Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC) (Jeju Island, Republic of Korea, 19–21 October 2022), pp. 1082–1087.
  23. Liu Z., Liu Y., Zhang W., Hong Y., Meng J., Wang J., Zheng Sh., Xu X.. “Deep learning for prediction of hepatocellular carcinoma recurrence after resection or liver transplantation: a discovery and validation study”, Hepatol. Int., 16:3 (2022), pp. 577–589.
  24. Борисов А. А., Семенов С. С., Арзамасов К. М.. «Использование трансферного обучения для автоматизированного поиска дефектов на рентгенограммах органов грудной клетки», Медицинская визуализация, 27:1, с. 158–169.
  25. Whaley J. S., Pressman B. D., Wilson J. R., Bravo L., Sehnert W. J., Foos D. H.. “Investigation of the variability in the assessment of digital chest X-ray image quality”, J. Digit. Imaging, 26:2 (2013), pp. 217–226.
  26. European Society of Radiology (ESR). “What the radiologist should know about artificial intelligence — an ESR white paper”, Insights Imaging, 10:1 (2019), 44.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).