Analysis of images of a plant obtained from a camera of an automated care system to visually assess the change in its state over time

Capa

Citar

Texto integral

Resumo

A method is proposed for analyzing plant images obtained from a single camera to determine the crown of a plant and detect its individual color shades. The possibility of visual assessment of the state of plants is considered. A description is given of the experimental installation for automated plant care, with the help of which the analyzed data were collected.

Sobre autores

Alexandr Smirnov

Ailamazyan Program Systems Institute of RAS

Autor responsável pela correspondência
Email: asmirnov_1991@mail.ru
ORCID ID: 0000-0002-7104-1462

Egor Ivanov

Ailamazyan Program Systems Institute of RAS

Email: egor.s.ivanov@gmail.com
ORCID ID: 0000-0002-5593-4404

Bibliografia

  1. S.D. Gupta, Y. Ibaraki. “Image analysis for plants: Basic procedures and techniques”, Plant Image Analysis: Fundamentals and Applications, CRC Press, Boca Raton, 2014, ISBN 9780429072345.
  2. А.Г. Зотин, Е.Ю. Золотарева. «Application of multispectral segmentation for the green vegetation status analysis based on video», Программные продукты и системы, 2011, №4 (in Russian).
  3. М.Я. Брагинский, Д.В. Тараканов. «Estimation of plants health using convolutional neural networks», Вестник кибернетики, 2021 10.34822/1999-7604-2021-1-41-50, №1(41), с. 41–50 (in Russian).
  4. J. Huixian. “The analysis of plants image recognition based on deep learning and artificial neural network”, IEEE Access, 8 (2020), pp. 68828–68841.
  5. F. Vasseur, J. Bresson, G. Wang, R. Schwab, D. Weigel. “Image-based methods for phenotyping growth dynamics and fitness components in ”, Plant Methods, 14 (2018), 63, 11 pp.
  6. N. Otsu. “A threshold selection method from gray-level histograms”, IEEE Transactions on Systems, Man, and Cybernetics, 9:1 (1979), pp. 62–66.
  7. P. Jaccard. “Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines”, Bull. Soc. Vaudoise Sci. Nat., 37:140 (1901), pp. 241–272.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).