The influence of tail fins on the speed of an aquatic robot driven by internal moving masses
- Autores: Klekovkin A.V.1, Karavaev Y.V.2, Kilin A.A.3, Nazarov A.V.2
-
Afiliações:
- P. G. Demidov Yaroslavl State University
- Kalashnikov Izhevsk State Technical University,
- Ural Mathematical Center, Udmurt State University
- Edição: Volume 16, Nº 4 (2024)
- Páginas: 869-882
- Seção: MODELS IN PHYSICS AND TECHNOLOGY
- URL: https://ogarev-online.ru/2076-7633/article/view/307208
- DOI: https://doi.org/10.20537/2076-7633-2024-16-4-869-882
- ID: 307208
Citar
Texto integral
Resumo
This paper describes the design of an aquatic robot moving on the surface of a fluid and driven by two internal moving masses. The body of the aquatic robot in cross section has the shape of a symmetrical airfoil with a sharp edge. In this prototype, two internal masses move in circles and are rotated by a single DC motor and a gear mechanism that transmits torque from the motor to each mass. Angular velocities of moving masses are used as a control action, and the developed kinematic scheme for transmitting rotation from the motor to the moving masses allows the rotation of two masses with equal angular velocities in magnitude, but with a different direction of rotation. It is also possible to install additional tail fins of various shapes and sizes on the body of this robot. Also in the work for this object, the equations of motion are presented, written in the form of Kirchhoff equations for the motion of a solid body in an ideal fluid, which are supplemented by terms of viscous resistance. A mathematical description of the additional forces acting on the flexible tail fin is presented. Experimental studies on the influence of various tail fins on the speed of motion in the fluid were carried out with the developed prototype of the robot. In this work, tail fins of the same shape and size were installed on the robot, while having different stiffness. The experiments were carried out in a pool with water, over which a camera was installed, on which video recordings of all the experiments were obtained. Next processing of the video recordings made it possible to obtain the object’s movements coordinates, as well as its linear and angular velocities. The paper shows the difference in the velocities developed by the robot when moving without a tail fin, as well as with tail fins having different stiffness. The comparison of the velocities developed by the robot, obtained in experimental studies, with the results of mathematical modeling of the system is given.
Palavras-chave
Sobre autores
A. Klekovkin
P. G. Demidov Yaroslavl State University
Autor responsável pela correspondência
Email: a.v.klekovkin@istu.ru
Rússia, 14 Sovetskaya st., Yaroslavl, 150003
Yu. Karavaev
Kalashnikov Izhevsk State Technical University,
Email: karavaev_yury@istu.ru
Rússia, 7 Studencheskaya st., Izhevsk, 426069
A. Kilin
Ural Mathematical Center, Udmurt State University
Email: kilin@rcd.ru
Rússia, Universitetskaya st., Izhevsk, 426034
A. Nazarov
Kalashnikov Izhevsk State Technical University,
Email: antonnaz14@gmail.com
Rússia, 7 Studencheskaya st., Izhevsk, 426069
Bibliografia
- А. А. Килин, А. И. Кленов, В. А. Тененев, “Управление движением тела с помощью внутренних масс в вязкой жидкости”, Компьютерные исследования и моделирование, 10:4 (2018), 445–460 [A. A. Kilin, A. I. Klenov, V. A. Tenenev, “Controlling the movement of the body using internal masses in a viscous liquid”, Computer Research and Modeling, 10:4 (2018), 445–460 (in Russian)].
- В. В. Козлов, Д. А. Онищенко, “О движении в идеальной жидкости тела, содержащего внутри себя подвижную сосредоточенную массу”, ПММ, 67:4 (2003), 620–633; V. V. Kozlov, D. A. Onishchenko, “The motion in a perfect fluid of a body containing a moving point mass”, J. Appl. Math. Mech., 67:4 (2003), 553–564.
- В. В. Козлов, С. М. Рамоданов, “О движении изменяемого тела в идеальной жидкости”, ПММ, 65:4 (2001), 592–601; V. V. Kozlov, S. M. Ramodanov, “The motion of a variable body in an ideal fluid”, J. Appl. Math. Mech., 65:4 (2001), 579–587.
- М. А. Эладави, Ю. Л. Караваев, “Анализ конструкций подводных роботов”, Вестник ИжГТУ им. М. Т. Калашникова, 26:1 (2023), 35–47 [M. A. Eladawy, Yu. L. Karavaev, “Analysis of underwater robot designs”, Vestnik IzhGTU im. M. T. Kalashnikova, 26:1 (2023), 35–47 (in Russian)].
- G. Antonelli, Underwater Robots, Springer, Cham, 2014, 279 pp.
- N. N. Bolotnik, T. Yu. Figurina, F. L. Chernous’ko, “Optimal control of the rectilinear motion of a two-body system in a resistive medium”, Journal of Applied Mathematics and Mechanics, 76:1 (2012), 1–14.
- A. V. Borisov, I. S. Mamaev, E. V. Vetchanin, “Dynamics of a smooth profile in a medium with friction in the presence of parametric excitation”, Regular and Chaotic Dynamics, 23:4 (2018), 480–502.
- A. V. Borisov, E. V. Vetchanin, A. A. Kilin, “Control of the motion of a triaxial ellipsoid in a fluid using rotors”, Mathematical Notes, 102:4 (2017), 455–464.
- N. V. Burmasheva, E. Yu. Prosviryakov, “Exact solutions to the Navier–Stokes equations for describing the convective flows of multilayer fluids”, Rus. J. Nonlin. Dyn., 18:3 (2022), 397–410.
- M. L. Castano, T. Xiaobo, “Model predictive control-based path-following for tail-actuated robotic fish”, Journal of Dynamic Systems, Measurement, and Control, 141:7 (2019), 11 pp.
- S. Childress, S. E. Spagnolie, T. Tokieda, “A bug on a raft: recoil locomotion in a viscous fluid”, J. Fluid Mech., 669 (2011), 527–556.
- W. S. Chu, K. T. Lee, S. H. Song, M. W. Han, J. Y. Lee, H. S. Kim, M. S. Kim, Y. J. Park, K. J. Cho, S. H. Ahn, “Review of biomimetic underwater robots using smart actuators”, International Journal of Precision Engineering and Manufacturing, 13:7 (2012), 1281–1292.
- S. V. Guvernyuk, Ya. A. Dynnikov, G. Ya. Dynnikova, T. V. Malakhova, “The contribution of added mass force to formation of propulsive force of flapping airfoil in viscous fluid”, Technical Physics Letters, 46:9 (2020), 847–850.
- A. P. Ivanov, “Vibroimpact mobile robot”, Rus. J. Nonlin. Dyn., 17:4 (2021), 429–436.
- Yu. L. Karavaev, “Spherical robots: an up-to-date overview of designs and features”, Rus. J. Nonlin. Dyn., 18:4 (2022), 709–750.
- Yu. L. Karavaev, A. A. Kilin, A. V. Klekovkin, “Experimental investigations of the controlled motion of a screwless underwater robot”, Regular and Chaotic Dynamics, 21:7–8 (2016), 918–926.
- Yu. L. Karavaev, A. V. Klekovkin, I. S. Mamaev, V. A. Tenenev, E. V. Vetchanin, “Simple physical model for control of a propellerless aquatic robot”, J. Mechanisms Robotics, 14:1 (2021), 011007, 11 pp.
- A. V. Klekovkin, Yu. L. Karavaev, I. S. Mamaev, “The control of an aquatic robot by a periodic rotation of the internal flywheel”, Rus. J. Nonlin. Dyn., 19:2 (2023), 265–279.
- A. I. Klenov, A. A. Kilin, “Influence of vortex structures on the controlled motion of an above-water screwless robot”, Regular and Chaotic Dynamics, 21:7–8 (2016), 927–938.
- L. A. Klimina, S. A. Golovanov, M. Z. Dosaev, Y. D. Selyutskiy, A. P. Holub, “Plane-parallel motion of a trimaran capsubot controlled with an internal flywheel”, International Journal of Non-Linear Mechanics, 150 (2023), 104341.
- O. S. Kotsur, G. A. Shcheglov, I. K. Marchevsky, “Approximate weak solutions to the vorticity evolution equation for a viscous incompressible fluid in the class of vortex filaments”, Rus. J. Nonlin. Dyn., 18:3 (2022), 423–439.
- M. J. Lighthill, “Large-amplitude elongated-body theory of fish locomotion”, Proc. R. Soc. Lond. B, 179 (1971), 125–138.
- I. S. Mamaev, V. A. Tenenev, E. V. Vetchanin, “Dynamics of a body with a sharp edge in a viscous fluid”, Rus. J. Nonlin. Dyn., 14:4 (2018), 473–494.
- V. A. Mamaev, E. V. Vetchanin, “The self-propulsion of a foil with a sharp edge in a viscous fluid under the action of a periodically oscillating rotor”, Regular and Chaotic Dynamics, 23:7–8 (2018), 875–886.
- A. N. A. Mazlan, E. McGookin, “Modelling and control of a biomimetic autonomous underwater vehicle”, 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), IEEE, 2012, 88–93.
- B. Pollard, P. Tallapragada, “An aquatic robot propelled by an internal rotor”, IEEE/ASME Transactions on Mechatronics, 22:2 (2016), 931–939.
- A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures”, Analytical Chemistry, 36:9 (1964), 1627–1639.
- I. V. Semernik, O. V. Bender, A. A. Tarasenko, C. V. Samonova, “Analysis and simulation of BER performance of chaotic underwater wireless optical communication systems”, Rus. J. Nonlin. Dyn., 19:1 (2023), 137–158.
- K. G. Shvarts, “Plane-parallel advective flow in a horizontal layer of incompressible permeable fluid”, Rus. J. Nonlin. Dyn., 19:2 (2023), 219–226.
- P. Tallapragada, S. D. Kelly, “Dynamics and self-propulsion of a spherical body shedding coaxial vortex rings in an ideal fluid”, Regular and Chaotic Dynamics, 18:1–2 (2013), 21–32.
- M. S. Triantafyllou, G. S. Triantafyllou, D. K. P. Yue, “Hydrodynamics of fishlike swimming”, Annual Review of Fluid Mechanics, 32:1 (2000), 33–53.
- E. V. Vetchanin, A. A. Kilin, “Free and controlled motion of a body with a moving internal mass through a fluid in the presence of circulation around the body”, Doklady Physics, 61:1 (2016), 32–36.
- E. V. Vetchanin, A. R. Valieva, “Analysis of the force and torque arising during the oscillatory motion of a Joukowsky foil in a fluid”, Rus. J. Nonlin. Dyn., 2023.
- L. Y. Vorochaeva (Volkova), S. F. Jatsun, “Control of the three-mass robot moving in the liquid environment”, Rus. J. Nonlin. Dyn., 7:4 (2011), 845–857.
- J. Wang, X. Tan, “A dynamic model for tail-actuated robotic fish with drag coefficient adaptation”, Mechatronics, 23:6 (2013), 659–668.
- Y. W. Wang, J. B. Tan, B. T. Gu, P. F. Sang, D. B. Zhao, “Design and modeling of a biomimetic stingraylike robotic fish”, Advanced Materials Research, 945–949 (2014), 1473–1477.
- T. Zou, X. Jian, M. Al-Tamimi, X. Wu, J. Wu, “Development of a low-cost soft robot fish with biomimetic swimming performance”, Journal of Mechanisms and Robotics, 16:6 (2024), 14 pp.
Arquivos suplementares
