Comparison of the isotopic composition (δ18O, δ2H) of snowfall and snow cover in Moscow in the winter of 2023/24

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The aim of the study was to estimate the agreement between the isotope composition of snow cover and precipitation in Moscow during the winter season of 2023/24 characterized by a particularly deep snow cover. We sampled selected layers in snow cover on the campus of the Lomonosov Moscow State University (MSU). All precipitation falling from late November 2023 to late February 2024 at the Moscow State University weather station was sampled. Stable oxygen and hydrogen isotope (δ18O and δ2H) composition was analyzed in snow and precipitation samples, and the deuterium excess (dexc) has been calculated. It has been found that equations of δ2H–δ18O ratio in precipitation and snow cover are similar. In February, the snow column showed an expansion of the range of δ18O and δ2H values, as well as a general trend of increasing of δ18O values by 1.2–0.6‰ and a decrease in dexc values compared with December–January precipitation. This is most likely due to the aging processes of the snow cover, such as the formation of ice crusts and horizons of loose snow in the lower layers of the snow thickness. In March, the isotopic contrast of the snow column was less pronounced, and during the period of active snowmelt in late March, the range of variations in δ18O and δ2H values was minimal. It has been shown that, in general, during the winter period of 2023/24 in Moscow, the isotopic characteristics of the snow cover were in good agreement with the weighted average isotopic data for all precipitation fallen during the observational period. That happened mostly due to the conditions of the winter period (predominance of snow precipitation, rare short thaws). Under these conditions partial melting resulted in the formation of ice crusts in the snow cover, but prevented the loss of meltwater.

Авторлар туралы

N. Budantseva

Lomonosov Moscow State University

Email: nadin.budantseva@mail.ru
Moscow, Russia

Yu. Vasil'chuk

Lomonosov Moscow State University

Moscow, Russia

Yu. Chizhova

Institute of Geography RAS

Moscow, Russia

Z. Vakhovskaya

Lomonosov Moscow State University

Moscow, Russia

A. Vasil'chuk

Lomonosov Moscow State University

Moscow, Russia

Әдебиет тізімі

  1. Буданцева Н.А., Васильчук Ю.К., Васильчук А.К. Изоскейпы и палеоизотермы среднеянварской температуры воздуха в голоцене на севере Западной Сибири (по данным изотопно-кислородного состава повторно-жильных льдов) // Вестник Московского университета. Сер. 5. География. 2024. Т. 79. № 3. С. 78–88. https://doi.org/10.55959/MSU0579-9414.5.79.3.7
  2. Васильчук Ю.К., Буданцева Н.А., Васильчук Д.Ю., Ерёмина И.Д., Блудушкина Л.Б. Вариации значений δ¹⁸О и содержание водорастворимых солей в атмосферных осадках Москвы в 2014–2016 гг. // Вестник Московского университета. Сер. 5. География. 2021. Т. 2. С. 35–43.
  3. Васильчук Ю.К., Буданцева Н.А., Васильчук Д.Ю., Васильчук А.К., Еремина И.Д., Чижова Ю.Н. Вариации значений δ¹⁸О и δ²Н в атмосферных осадках Москвы в 2017–2019 гг. // Вестник Московского университета. Сер. 5. География. 2024. Т. 79. № 1. С. 114–124. https://doi.org/10.55959/MSU0579-9414.5.79.1.9
  4. Ala-aho P., Tetzlaff D., McNamara J. P., Laudon H., Kormos P., Soulsby C. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach // Water Resources Research. 2017. V. 53. № 7. Р. 5813–5830. https://doi.org/10.1002/2017WR020650
  5. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. № 4. Р. 436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
  6. Friedman I., Benson C., Gleason J. Isotopic changes during snow metamorphism // Stable Isotope Geochemistry: A tribute to Samuel Epstein / Eds.: H.P. Taylor Jr., J.R. O’Neil, I.R. Kaplan, The Geochemical Society. Special Publication. 1991. № 3. Р. 211–221.
  7. Frolov D. M., Seliverstov Yu. G., Koshurnikov A. V., Gagarin V. E., Nikolaeva E. S. Snow accumulation specifics in Moscow in winter 2023/24 // BIO Web of Conferences. 2024. № 93. Р. 04010. https://doi.org/10.1051/bioconf/20249304010
  8. Hughes A. G., Wahl S., Jones T. R., Zuhr A., Hörhold M., White J. W. C., Steen-Larsen H. C. The role of sublimation as a driver of climate signals in the water isotope content of surface snow: Laboratory and field experimental results // The Cryosphere. 2021. № 15. Р. 4949–4974. https://doi.org/10.5194/tc-15-4949-2021
  9. Langman J. B., Martin J., Gaddy E., Boll J., Behrens D. Snowpack aging, water isotope evolution, and runoff isotope signals, Palouse Range, Idaho, USA // Hydrology. 2022. V. 9. № 94. https://doi.org/10.3390/hydrology9060094
  10. Lee J., Feng X., Faiia A.M., Posmentier E.S., Kirchner J.W., Osterhuber R., Taylor S. Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice // Chemical geology. 2010. V. 270. № 1–4. Р. 126–134. https://doi.org/10.1016/j.chemgeo.2009.11.011
  11. Papina T., Eirikh A., Noskova T. Factors influencing changes of the initial stable water isotopes composition in the seasonal snowpack of the south of Western Siberia, Russia // Applied Sciences. 2022. № 12. 625 p. https://doi.org/10.3390/app12020625
  12. Rücker A., Boss S., Kirchner J. W., von Freyberg J. Monitoring snowpack outflow volumes and their isotopic composition to better understand streamflow generation during rain-on-snow events // Hydrology and Earth System Sciences. 2019. № 23. Р. 2983–3005. https://doi.org/10.5194/hess-23-2983-2019
  13. Sokratov S. A., Golubev V. N. Snow isotopic content change by sublimation // Journ. of Glaciology. 2009. V. 55. № 193. Р. 823–828.
  14. Sokratov S.A., Komarov A.Y., Vasil’chuk Y.K., Budantseva N.A., Vasil’chuk D.Yu, Seliverstov Yu.G., Grebennikov P.B., Frolov D.M. Spatial-temporal variability of the δ¹⁸О values and the snow cover structure on the territory of the Meteorological Observatory of the Moscow State University // Water Resources. 2024. V. 51. № 51. Р. 589–599. https://doi.org/10.1134/S0097807824701367
  15. Stuart R.H., Faber A.-K., Wahl S., Hörhold M., Kipfstuhl S., Vasskog K., Behrens M., Zuhr A.M., SteenLarsen H.C. Exploring the role of snow metamorphism on the isotopic composition of the surface snow at EastGRIP // The Cryosphere. 2023. V. 17. Р. 1185–1204. https://doi.org/10.5194/tc-17-1185-2023
  16. Taylor S., Feng X., Kirchner J.W., Osterhuber R., Klaue B., Renshaw C.E. Isotopic evolution of a seasonal snowpack and its melt // Water Resources Research. 2001. V. 37. № 3. Р. 759–769. https://doi.org/10.1029/2000WR900341
  17. Unnikrishna P. V., McDonnell J. J., Kendall C. Isotope variations in a Sierra Nevada snowpack and their relation to meltwater // Journ. of Hydrology. 2002. № 260. Р. 38–57.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).