Automated Interpretation of Multi-Zone Space Images for Snow Depth Recognition: the Case of Western Yakutia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents a methodology for mapping the depth of snow cover in 5 areas of Western Yakutia using field data and automated interpretation of the depth of snow cover using the unsupervised classification method (classification without training) of a multi-spectral space image obtained in the spring in the area under consideration. Field snow surveys in the study area were carried out in March-April 2024 at 52 points. The depth of snow cover in March ranged from 28 to 70 cm, and its density from 0.12 to 0.21 g/cm3. Landsat-8 / OLI images closest to the dates of field snow surveys were used as initial images to identify differences in the distribution of snow depth in the areas under consideration. We created a map of the depth of snow cover for the areas under consideration Muna, Udachny, Aikhal, Nakyn and Mirny in two stages. The first stage included an analysis of the spatial differentiation of snow cover using a combination of 5–4–3 Landsat-8/OLI bands. Then, to interpret the depth of snow cover, this multispectral image was divided into classes using the unsupervised classification method in the ArcGIS 10.1 program, and the resulting classes were compared with field research materials. According to the results of the conducted study of snow depth mapping, it was revealed that the lowest snow depths are typical for the lower parts of the slopes, as well as for the slopes of windward western and northwestern exposures. The average thickness of the snow cover occurs in the middle and lower parts of the slopes of leeward and, less often, windward exposures. The greatest snow depths are formed on the watershed and upper parts of the slopes of leeward exposures, which is explained by the large amount of snow and increased turbulence of air masses in the upper parts of the watersheds. In addition, the greatest snow thickness is typical and for river valleys, in depressions, as well as on man-made landscapes and residential areas. Comparison of the results of automated decoding (uncontrolled classification) with field snow measurements confirmed the applicability of this method in differentiating the depth of snow cover.

About the authors

S. V Kalinicheva

Permafrost Institute, Siberian Branch of the Russian Academy of Sciences

Email: ikoveta@rambler.ru
Yakutsk, Russia

A. N Petrova

Permafrost Institute, Siberian Branch of the Russian Academy of Sciences

Yakutsk, Russia

V. P Semenov

Permafrost Institute, Siberian Branch of the Russian Academy of Sciences

Yakutsk, Russia

References

  1. Булыгина О.Н., Коршунова Н.Н., Разуваев В.Н. Мониторинг снежного покрова на территории Российской Федерации // Труды Гидрометцентра России. 2017. Вып. 366. С. 87–96.
  2. Елисеев А.В., Симакина Т.Е. Определение высоты снежного покрова по многоспектральным спутниковым снимкам // Материалы 22-й Международной конференции “Современные проблемы дистанционного зондирования Земли из космоса” (Москва, 11–15 ноября 2024 г.). М.: Ин-т космических исследований РАН, 2024. С. 256. https://doi.org/10.21046/22DZZconf-2024a
  3. Кудрявцев В.А. Температура вечномерзлой толщи в пределах СССР. М.: Изд-во АН СССР, 1954. 182 с.
  4. Методы дистанционного исследования земной поверхности: учебно-методическое пособие / П.Н. Дагуров, Т.Н. Чимитдоржиев. Улан-Удэ: Изд-во ФГОУ ВПО, 2005. 88 с.
  5. Научно-прикладной справочник «Климат России» // Электронный ресурс. URL: http://aisori.meteo.ru/ ClspR ( Дата обращения 01.06.2025)
  6. Павлов А.В. Теплообмен почвы с атмосферой в северных и умеренных широтах территории СССР. Якутск: Якутское книжное изд-во, 1975. 301 с.
  7. Павлов А.В. Теплофизика ландшафтов. Новосибирск: Наука, 1979. 237 с.
  8. Порхаев Г.В. Тепловое взаимодействие зданий и сооружений с вечномерзлыми грунтами. М.: Наука, 1970. 208 с.
  9. Проскурякова Б.В. Указания по подготовке грунта к разработке в зимних условиях. М.: Бюро технич. помощи ин-та Госсельстрой, 1956. 190 с.
  10. Фельдман Г.М. Прогноз температурного режима грунтов и развития криогенных процессов. Новосибирск: Наука, 1977. 191 с.
  11. Физико-географическое районирование СССР / Под ред. Н.А. Гвоздецкого. М.: Изд-во МГУ, 1968. 576 с.
  12. Шендер Н.И. Рекомендации по прогнозу температурного режима грунтов. Якутск: Ин-т мерзлотоведения Сибирского отделения АН СССР, 1986. 57 с.
  13. Шошин Е.Л. Методы дистанционного измерения характеристик снежных покровов // Вестник кибернетики. 2021. № 1 (41). С. 20–30. https://doi.org/10.34822/1999-7604-2021-1-20-30
  14. Adams M.S., Bühler Y., Fromm R. Multitemporal accuracy and precision assessment of unmanned aerial system photogrammetry for slope-scale snow depth maps in alpine terrain // Pure Appl. Geophys. 2018. V. 175 (9). P. 3303–3324. https://doi.org/10.1007/s00024-017-1748-y
  15. Bühler Y., Adams M.S., Bösch R., Stoffel A. Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations // The Cryosphere. 2016. V. 10 (3). P. 1075–1088. https://doi.org/10.5194/tc-10-1075-2016
  16. Eberhard L.A., Sirguey P., Miller A., Marty M., Schindler K., Stoffel A., Bühler Y. Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping // The Cryosphere. 2021. V. 15 P. 69–94. https://doi.org/10.5194/tc-15-69-2021
  17. ESRI. Resources for ArcMap and migration support // Электронный ресурс. URL: https://www.esri.com/ en-us/arcgis/products/arcgis-desktop/resources (Дата обращения: 07.05.2025).
  18. GISLAB. Географические информационные системы и дистанционное зондирование // Электронный ресурс. URL: https://gis-lab.info/qa/landsat-bandcomb.html (Дата обращения: 07.05.2025).
  19. Jacobs J.M., Hunsaker A.G., Sullivan F.B., Palace M., Burakowski E.A., Herrick C., Cho E. Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States // The Cryosphere. 2021. V. 15. P. 1485–1500. https://doi.org/10.5194/tc-15-1485-2021
  20. Lievens H., Demuzere M., Marshall H.P. Snow depth variability in the Northern Hemisphere mountains observed from space // Nat. Commun. 2019. V. 10. 4629. https://doi.org/10.1038/s41467-019-12566-y
  21. Toleubay Zh.B., Usalinov E.B., Shmatov B.B. Model for calculating snow cover characteristics based on remote sensing data // Science Bulletin of the Kazakh Agro Technical University named after S. Seifullin. 2021. V. 4. № 111. P. 44–49. https://doi.org/10.51452/kazatu.2021.4(111).782

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).