Mechanisms of anticephalgic action of the vagus nerve electrostimulation: experimental study results

Cover Page

Cite item

Abstract

Cervical or auricular vagus nerve stimulation (VNS) is an effective and safe non-pharmacological treatment for epilepsy, depression, obesity, post-stroke motor impairments, and certain types of primary headaches (HA), including migraine. This review briefly summarizes data on various VNS device models, the pathophysiology of HA, and approved neuromodulatory therapies for headache management. Experimental findings have been analyzed regarding the role of sensory nuclei of the trigeminal and vagus nerves, as well as supraspinal structures of the central nervous system, particularly the dorsal raphe nucleus and locus coeruleus, in mediating the inhibitory effects of VNS on nociceptive transmission within the trigeminothalamocortical pathway, whose hyperactivity is a key mechanism in HA pathogenesis. The review details studies using rodent migraine models, which demonstrated VNS-mediated suppression of spinal trigeminal nucleus neuronal activity and cortical spreading depression, effects achieved through neurotransmitters such as serotonin, norepinephrine, and gamma-aminobutyric acid (GABA). The mechanisms of VNS therapeutic action in HA should remain a focus of experimental and clinical research, as current evidence in this field requires further updating and validation.

About the authors

Alexey Yu. Sokolov

Pavlov Institute of Physiology of the Russian Academy of Sciences; Pavlov First Saint Petersburg State Medical University

Author for correspondence.
Email: alexey.y.sokolov@gmail.com
ORCID iD: 0000-0002-6141-486X

Dr. Sci (Med.), Assoc. Prof., senior researcher, Head, Neuropharmacology department, Valdman Institute of Pharmacology

Russian Federation, St. Petersburg; St. Petersburg

Alexander V. Amelin

Pavlov First Saint Petersburg State Medical University

Email: avamelin@mail.ru
ORCID iD: 0000-0001-6437-232X

Dr. Sci (Med.), Professor, Department of neurology with a clinic, Head, Center for diagnostics and treatment of headache

Russian Federation, St. Petersburg

Olga A. Lyubashina

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: laglo2009@yandex.ru
ORCID iD: 0000-0002-6296-4628

Dr. Sci (Biol.), Head, Laboratory of cortico-visceral physiology

Russian Federation, St. Petersburg

References

  1. Austelle CW, Cox SS, Wills KE, Badran BW. Vagus nerve stimulation (VNS): recent advances and future directions. Clin Auton Res. 2024;34(6):529–547. doi: 10.1007/s10286-024-01065-w
  2. Chen Z, Liu K. Mechanism and applications of vagus nerve stimulation. Curr Issues Mol Biol. 2025;47(2):122. doi: 10.3390/cimb47020122
  3. Kocyigit BF, Assylbek MI, Akyol A, et al. Vagus nerve stimulation as a therapeutic option in inflammatory rheumatic diseases. Rheumatol Int. 2024;44(1):1–8. doi: 10.1007/s00296-023-05477-1
  4. Morais A, Chung JY, Wu L, et al. Non-invasive vagal nerve stimulation pre-treatment reduces neurological dysfunction after closed head injury in mice. Neurotrauma Rep. 2024;5(1):150–158. doi: 10.1089/neur.2023.0058
  5. Förster CY. Transcutaneous non-invasive vagus nerve stimulation: changing the paradigm for stroke and atrial fibrillation therapies? Biomolecules. 2024;14(12):1511. doi: 10.3390/biom14121511
  6. Mondal B, Choudhury S, Banerjee R, et al. Effects of non-invasive vagus nerve stimulation on clinical symptoms and molecular biomarkers in Parkinson’s disease. Front Aging Neurosci. 2024;15:1331575. doi: 10.3389/fnagi.2023.1331575
  7. Yan L, Li H, Qian Y, et al. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer’s disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci. 2024;16:1334887. doi: 10.3389/fnagi.2024.1334887
  8. Hesampour F, Bernstein CN, Ghia JE. Brain-gut axis: invasive and noninvasive vagus nerve stimulation, limitations, and potential therapeutic approaches. Inflamm Bowel Dis. 2024;30(3):482–495. doi: 10.1093/ibd/izad211
  9. Faraji N, Payami B, Ebadpour N, Gorji A. Vagus nerve stimulation and gut microbiota interactions: a novel therapeutic avenue for neuropsychiatric disorders. Neurosci Biobehav Rev. 2025;169:105990. doi: 10.1016/j.neubiorev.2024.105990
  10. Bremner JD, Gazi AH, Lambert TP, et al. Noninvasive vagal nerve stimulation for opioid use disorder. Ann Depress Anxiety. 2023;10(1):1117.
  11. Winter Y, Sandner K, Bassetti CLA, et al. Vagus nerve stimulation for the treatment of narcolepsy. Brain Stimul. 2024;17(1):83–88. doi: 10.1016/j.brs.2024.01.002
  12. Wang L, Gao F, Wang Z, et al. Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: mechanisms and applications. Front Neurosci. 2023;17:1286267. doi: 10.3389/fnins.2023.1286267
  13. Costa V, Gianlorenço AC, Andrade MF, et al. Transcutaneous vagus nerve stimulation effects on chronic pain: systematic review and meta-analysis. Pain Rep. 2024;9(5):e1171. doi: 10.1097/PR9.0000000000001171
  14. Chen J, Kuang H, Chen A, et al. Transcutaneous auricular vagus nerve stimulation for managing pain: a scoping review. Pain Manag Nurs. 2025;26(1):33–39. doi: 10.1016/j.pmn.2024.11.006
  15. Fang YT, Lin YT, Tseng WL, et al. Neuroimmunomodulation of vagus nerve stimulation and the therapeutic implications. Front Aging Neurosci. 2023;15:1173987. doi: 10.3389/fnagi.2023.1173987
  16. Gerges ANH, Williams EER, Hillier S, et al. Clinical application of transcutaneous auricular vagus nerve stimulation: a scoping review. Disabil Rehabil. 2024;46(24):5730–5760. doi: 10.1080/09638288.2024.2313123
  17. Ma L, Wang HB, Hashimoto K. The vagus nerve: an old but new player in brain-body communication. Brain Behav Immun. 2025;124:28–39. doi: 10.1016/j.bbi.2024.11.023
  18. Zou N, Zhou Q, Zhang Y, et al. Transcutaneous auricular vagus nerve stimulation as a novel therapy connecting the central and peripheral systems: a review. Int J Surg. 2024;110(8):4993–5006. doi: 10.1097/JS9.0000000000001592
  19. Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol. 2015;22(9):1260–1268. doi: 10.1111/ene.12629
  20. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. doi: 10.1177/0333102417738202
  21. Амелин А.В., Соколов А.Ю., Ваганова Ю.С. Мигрень. От патогенеза до лечения. М.; 2023. Amelin AV, Sokolov AYu, Vaganova YuS. Migraine. From pathogenesis to treatment. Moscow; 2023. (In Russ.)
  22. Ashina M, Hansen JM, Do TP, et al. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol. 2019;18(8):795–804. doi: 10.1016/S1474-4422(19)30185-1
  23. Bahra A. Paroxysmal hemicrania and hemicrania continua: review on pathophysiology, clinical features and treatment. Cephalalgia. 2023;43(11):3331024231214239. doi: 10.1177/03331024231214239
  24. Onan D, Younis S, Wellsgatnik WD, et al. Debate: differences and similarities between tension-type headache and migraine. J Headache Pain. 2023;24(1):92. doi: 10.1186/s10194-023-01614-0
  25. Ashina S, Mitsikostas DD, Lee MJ, et al. Tension-type headache. Nat Rev Dis Primers. 2021;7(1):24. doi: 10.1038/s41572-021-00257-2
  26. Repiso-Guardeño Á, Moreno-Morales N, Labajos-Manzanares MT, et al. Does tension headache have a central or peripheral origin? Current state of affairs. Curr Pain Headache Rep. 2023;27(11):801–810. doi: 10.1007/s11916-023-01179-2
  27. Hoffmann J, Baca SM, Akerman S. Neurovascular mechanisms of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39(4):573–594. doi: 10.1177/0271678X17733655
  28. Karsan N, Gosalia H, Goadsby PJ. Molecular mechanisms of migraine: nitric oxide synthase and neuropeptides. Int J Mol Sci. 2023;24(15):11993. doi: 10.3390/ijms241511993
  29. Frimpong-Manson K, Ortiz YT, McMahon LR, Wilkerson JL. Advances in understanding migraine pathophysiology: a bench to bedside review of research insights and therapeutics. Front Mol Neurosci. 2024;17:1355281. doi: 10.3389/fnmol.2024.1355281
  30. Coppola G, Abagnale C, Sebastianelli G, Goadsby PJ. Pathophysiology of cluster headache: from the trigeminovascular system to the cerebral networks. Cephalalgia. 2024;44(2):3331024231209317. doi: 10.1177/03331024231209317
  31. Petersen AS, Lund N, Goadsby PJ, et al. Recent advances in diagnosing, managing, and understanding the pathophysiology of cluster headache. Lancet Neurol. 2024;23(7):712–724. doi: 10.1016/S1474-4422(24)00143-1
  32. Goadsby PJ. Indomethacin-responsive headache disorders. Continuum (Minneap Minn). 2024;30(2):488–497. doi: 10.1212/CON.0000000000001409
  33. Osiowski A, Stolarz K, Baran K, et al. Indomethacin-responsive trigeminal autonomic cephalgias: a review of key characteristics and pathophysiology. Neurol Neurochir Pol. 2024;58(4):380–392. doi: 10.5603/pjnns.99747
  34. Соколов А.Ю., Любашина О.А., Ваганова Ю.С., Амелин А.В. Периферическая нейростимуляция в терапии головных болей. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019;119(10):79–88. Sokolov AYu, Lyubashina OA, Vaganova YuS, Amelin AV. Peripheral neurostimulation in headache treatment. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(10):79–88. doi: 10.17116/jnevro201911910179
  35. Cocores AN, Smirnoff L, Greco G, et al. Update on neuromodulation for migraine and other primary headache disorders: recent advances and new indications. Curr Pain Headache Rep. 2025;29(1):47. doi: 10.1007/s11916-024-01314-7
  36. Song D, Li P, Wang Y, Cao J. Noninvasive vagus nerve stimulation for migraine: a systematic review and meta-analysis of randomized controlled trials. Front Neurol. 2023;14:1190062. doi: 10.3389/fneur.2023.1190062
  37. Fernández-Hernando D, Justribó Manion C, Pareja JA, et al. Effects of non-invasive neuromodulation of the vagus nerve for the management of cluster headache: a systematic review. J Clin Med. 2023;12(19):6315. doi: 10.3390/jcm12196315
  38. Villar-Martinez MD, Goadsby PJ. Non-invasive neuromodulation of the cervical vagus nerve in rare primary headaches. Front Pain Res (Lausanne). 2023;4:1062892. doi: 10.3389/fpain.2023.1062892
  39. Ruggiero DA, Underwood MD, Mann JJ, et al. The human nucleus of the solitary tract: visceral pathways revealed with an “in vitro” postmortem tracing method. J Auton Nerv Syst. 2000;79(2-3):181–190. doi: 10.1016/s0165-1838(99)00097-1
  40. Zerari-Mailly F, Buisseret P, Buisseret-Delmas C, Nosjean A. Trigemino-solitarii-facial pathway in rats. J Comp Neurol. 2005;487(2):176–189. doi: 10.1002/cne.20554
  41. Noseda R, Monconduit L, Constandil L, et al. Central nervous system networks involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in the rat. Cephalalgia. 2008;28(8):813–824. doi: 10.1111/j.1468-2982.2008.01588.x
  42. Mercante B, Ginatempo F, Manca A, et al. Anatomo-physiologic basis for auricular stimulation. Med Acupunct. 2018;30(3):141–150. doi: 10.1089/acu.2017.1254
  43. Henssen DJHA, Derks B, van Doorn M, et al. Vagus nerve stimulation for primary headache disorders: an anatomical review to explain a clinical phenomenon. Cephalalgia. 2019;39(9):1180–1194. doi: 10.1177/0333102419833076
  44. Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med. 2000;11(1):57–91. doi: 10.1177/10454411000110010401
  45. Zhang LL, Ashwell KW. The development of cranial nerve and visceral afferents to the nucleus of the solitary tract in the rat. Anat Embryol (Berl). 2001;204(2):135–151. doi: 10.1007/s004290100185
  46. Bohotin C, Scholsem M, Multon S, et al. Vagus nerve stimulation in awake rats reduces formalin-induced nociceptive behaviour and fos-immunoreactivity in trigeminal nucleus caudalis. Pain. 2003;101(1–2):3–12. doi: 10.1016/s0304-3959(02)00301-9
  47. Mørch CD, Hu JW, Arendt-Nielsen L, Sessle BJ. Convergence of cutaneous, musculoskeletal, dural and visceral afferents onto nociceptive neurons in the first cervical dorsal horn. Eur J Neurosci. 2007;26(1):142–154. doi: 10.1111/j.1460-9568.2007.05608.x
  48. Соколов АЮ, Игнатов ЮД. Сегментарные анатомические структуры ствола мозга, участвующие в механизмах формирования головной боли. Медицинский академический журнал. 2010;10(2):17–31. Sokolov AY, Ignatov YD. Segmental anatomical structures of the brainstem involved in the mechanisms of headache formation. Medical Academic Journal. 2010;10(2):17–31.
  49. Lyubashina OA, Sokolov AY, Panteleev SS. Vagal afferent modulation of spinal trigeminal neuronal responses to dural electrical stimulation in rats. Neuroscience. 2012;222:29–37. doi: 10.1016/j.neuroscience.2012.07.011
  50. Henssen DJHA, Derks B, van Doorn M, et al. Visualizing the trigeminovagal complex in the human medulla by combining ex-vivo ultra-high resolution structural MRI and polarized light imaging microscopy. Sci Rep. 2019;9(1):11305. doi: 10.1038/s41598-019-47855-5
  51. Peng KP, May A. Noninvasive vagus nerve stimulation modulates trigeminal but not extracephalic somatosensory perception: functional evidence for a trigemino-vagal system in humans. Pain. 2022;163(10):1978–1986. doi: 10.1097/j.pain.0000000000002595
  52. Takeda M, Tanimoto T, Ojima K, Matsumoto S. Suppressive effect of vagal afferents on the activity of the trigeminal spinal neurons related to the jaw-opening reflex in rats: involvement of the endogenous opioid system. Brain Res Bull. 1998;47(1):49–56. doi: 10.1016/s0361-9230(98)00059-8
  53. Tanimoto T, Takeda M, Matsumoto S. Suppressive effect of vagal afferents on cervical dorsal horn neurons responding to tooth pulp electrical stimulation in the rat. Exp Brain Res. 2002;145(4):468–479. doi: 10.1007/s00221-002-1138-1
  54. Bossut DF, Maixner W. Effects of cardiac vagal afferent electrostimulation on the responses of trigeminal and trigeminothalamic neurons to noxious orofacial stimulation. Pain. 1996;65(1):101–109. doi: 10.1016/0304-3959(95)00166-2
  55. Owens MM, Jacquemet V, Napadow V, et al. Brainstem neuronal responses to transcutaneous auricular and cervical vagus nerve stimulation in rats. J Physiol. 2024;602(16):4027–4052. doi: 10.1113/JP286680
  56. Nishikawa Y, Koyama N, Yoshida Y, Yokota T. Activation of ascending antinociceptive system by vagal afferent input as revealed in the nucleus ventralis posteromedialis. Brain Res. 1999;833(1):108–111. doi: 10.1016/s0006-8993(99)01521-8
  57. Соколов АЮ, Игнатов ЮД. Основные подкорковые структуры мозга как мишень действия препаратов для фармакотерапии первичных головных болей. Обзоры по клинической фармакологии и лекарственной терапии. 2010;8(2):13–26. Sokolov AYu, Ignatov YuD. Main subcortical brain structures as a target of action of drugs for primary headaches pharmacotherapy. Reviews on clinical pharmacology and drug therapy. 2010;8(2):13–26.
  58. Ruffoli R, Giorgi FS, Pizzanelli C, et al. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat. 2011;42(4):288–296. doi: 10.1016/j.jchemneu.2010.12.002
  59. Groves DA, Bowman EM, Brown VJ. Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci Lett. 2005;379(3):174–179. doi: 10.1016/j.neulet.2004.12.055
  60. Dorr AE, Debonnel G. Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J Pharmacol Exp Ther. 2006;318(2):890–898. doi: 10.1124/jpet.106.104166
  61. Tanimoto T, Takeda M, Nishikawa T, Matsumoto S. The role of 5-hydroxytryptamine3 receptors in the vagal afferent activation-induced inhibition of the first cervical dorsal horn spinal neurons projected from tooth pulp in the rat. J Pharmacol Exp Ther. 2004;311(2):803–810. doi: 10.1124/jpet.104.070300
  62. Cunningham JT, Mifflin SW, Gould GG, Frazer A. Induction of c-Fos and DeltaFosB immunoreactivity in rat brain by Vagal nerve stimulation. Neuropsychopharmacology. 2008;33(8):1884–1895. doi: 10.1038/sj.npp.1301570
  63. Hulsey DR, Riley JR, Loerwald KW, et al. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp Neurol. 2017;289:21–30. doi: 10.1016/j.expneurol.2016.12.005
  64. Akerman S, Holland PR, Hoffmann J. Pearls and pitfalls in experimental in vivo models of migraine: dural trigeminovascular nociception. Cephalalgia. 2013;33(8):577–592. doi: 10.1177/0333102412472071
  65. Долгорукова А.Н., Соколов А.Ю. Электрофизиологическая модель тригеминоваскулярной ноцицепции как инструмент экспериментального изучения фармакотерапии мигрени. Российский журнал боли. 2021;19(3):31–38. Dolgorukova A, Sokolov AYu. Electrophysiological model of trigeminovascular nociception as a tool for experimental study of migraine pharmacotherapy. Russian journal of pain. 2021;19(3):31–38. doi: 10.17116/pain20211903131.
  66. Holle-Lee D, Gaul C. Noninvasive vagus nerve stimulation in the management of cluster headache: clinical evidence and practical experience. Ther Adv Neurol Disord. 2016;9(3):230–234. doi: 10.1177/1756285616636024
  67. Yuan H, Silberstein SD. Vagus nerve stimulation and headache. Headache. 2017;57(1):29–33. doi: 10.1111/head.12721
  68. Oshinsky ML, Murphy AL, Hekierski H Jr, et al. Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain. 2014;155(5):1037–1042. doi: 10.1016/j.pain.2014.02.009
  69. Hawkins JL, Cornelison LE, Blankenship BA, Durham PL. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine. Pain Rep. 2017;2(6):e628. doi: 10.1097/PR9.0000000000000628
  70. Cornelison LE, Woodman SE, Durham PL. Inhibition of trigeminal nociception by non-invasive vagus nerve stimulation: investigating the role of GABAergic and serotonergic pathways in a model of episodic migraine. Front Neurol. 2020;11:146. doi: 10.3389/fneur.2020.00146
  71. Cornelison LE, Hawkins JL, Woodman SE, Durham PL. Noninvasive vagus nerve stimulation and morphine transiently inhibit trigeminal pain signaling in a chronic headache model. Pain Rep. 2020;5(6):e881. doi: 10.1097/PR9.0000000000000881
  72. Chen SP, Ay I, Lopes de Morais A, et al. Vagus nerve stimulation inhibits cortical spreading depression. Pain. 2016;157(4):797–805. doi: 10.1097/j.pain.0000000000000437
  73. Morais A, Liu TT, Qin T, et al. Vagus nerve stimulation inhibits cortical spreading depression exclusively through central mechanisms. Pain. 2020;161(7):1661–1669. doi: 10.1097/j.pain.0000000000001856
  74. Liu TT, Morais A, Takizawa T, et al. Efficacy profile of noninvasive vagus nerve stimulation on cortical spreading depression susceptibility and the tissue response in a rat model. J Headache Pain. 2022;23(1):12. doi: 10.1186/s10194-022-01384-1
  75. Liu TT, Chen SP, Wang SJ, Yen JC. Vagus nerve stimulation inhibits cortical spreading depression via glutamate-dependent TrkB activation mechanism in the nucleus tractus solitarius. Cephalalgia. 2024;44(2):3331024241230466. doi: 10.1177/03331024241230466
  76. Akerman S, Simon B, Romero-Reyes M. Vagus nerve stimulation suppresses acute noxious activation of trigeminocervical neurons in animal models of primary headache. Neurobiol Dis. 2017;102:96–104. doi: 10.1016/j.nbd.2017.03.004
  77. Hu B, Akerman S, Goadsby PJ. Characterization of opioidergic mechanisms related to the anti-migraine effect of vagus nerve stimulation. Neuropharmacology. 2021;195:108375. doi: 10.1016/j.neuropharm.2020.108375

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Sokolov A.Y., Amelin A.V., Lyubashina O.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).