The role of neuroinflammation and impairment of the blood-spinal cord barrier in pathogenesis of amyotrophic lateral sclerosis

Cover Page

Cite item

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons in the brain and spinal cord. As the disease progresses, paralysis and skeletal muscle atrophy develop, ultimately leading to fatal outcomes. Investigation of ALS pathogenetic mechanisms is crucial for developing effective treatment approaches. This literature review examines the role of neuroinflammation and blood-spinal cord barrier dysfunction in disease progression. Damaged neurons release proinflammatory cytokines as the pathology advances. Neuroinflammation in ALS develops through activation of the NF-κB pathway and cGAS/STING pathway, RNA metabolism dysregulation, microglial and astrocyte activation/proliferation, immune cell involvement, and other processes. Activated astrocytes and microglia increase blood-spinal cord barrier permeability. Neuroinflammation induces endothelial mitochondrial dysfunction, capillary diameter reduction, and progressive loss of perivascular components. The complex of proinflammatory reactions affecting central nervous system barriers accelerates ALS symptom progression. This review presents current data and analysis of pathogenetic mechanisms underlying neuroinflammation and blood-spinal cord barrier disruption in ALS.

About the authors

Egor S. Averchuk

Russian Center of Neurology and Neurosciences

Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0000-0002-5736-4636

postgraduate student

Russian Federation, Moscow

Alla B. Salmina

Russian Center of Neurology and Neurosciences

Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0000-0003-4012-6348

D. Sci. (Med.), Corresponding member of RAS, Prof., chief researcher, Head, Laboratory of neurobiology and tissue engineering, Brain Institute

Russian Federation, Moscow

Liaisan A. Akhmadieva

Kazan State Medical University

Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0009-0000-4926-3192

junior researcher, Institute of Neuroscience

Russian Federation, Kazan

Marat A. Mukhamedyarov

Kazan State Medical University

Author for correspondence.
Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0000-0002-0397-9002

D. Sci. (Med.), Prof. Head, Department of normal physiology, Director, Institute of Neuroscience

Russian Federation, Kazan

Sergey N. Illarioshkin

Russian Center of Neurology and Neurosciences

Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0000-0002-2704-6282

Dr. Sci. (Med.), Prof., Full member of the RAS, Director, Brain Institute, Deputy director, Russian Center

Russian Federation, Moscow

References

  1. Hardiman O. Management of respiratory symptoms in ALS. J Neurol. 2011;258(3):359–365. doi: 10.1007/s00415-010-5830-y
  2. Мухамедьяров М.А., Хабибрахманов А.Н., Зефиров А.Л. Ранние дисфункции при боковом амиотрофическом склерозе: патогенетические механизмы и роль в инициации заболевания. Биологические мембраны. 2020;37(4):264–270 . Mukhamedyarov MA, Khabibrakhmanov AN, Zefirov AL. Early dysfunctions in amyotrophic lateral sclerosis: pathogenetic mechanisms and the role in disease initiation. Biological Membranes. 2020;37(4):264–270. doi: 10.31857/S0233475520040064
  3. Chiò A, Logroscino G, Traynor BJ, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. 2013;41(2):118–130. doi: 10.1159/000351153
  4. Logroscino G, Traynor BJ, Hardiman O, et al. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry. 2010;81(4):385–390. doi: 10.1136/jnnp.2009.183525
  5. Turner MR, Barnwell J, Al-Chalabi A, Eisen A. Young-onset amyotrophic lateral sclerosis: historical and other observations. Brain. 2012;135(Pt 9): 2883–2891. doi: 10.1093/brain/aws144
  6. Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread. Neurology. 2009;73(10):805–811. doi: 10.1212/WNL.0b013e3181b6bbbd
  7. Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017;3:17071. doi: 10.1038/nrdp.2017.71
  8. Мухамедьяров М.А., Петров А.М., Григорьев П.Н. и др. Боковой амиотрофический склероз: современные представления о патогенезе и экспериментальные модели. Журнал высшей нервной деятельности. 2018;68(5):551–567. Mukhamedyarov MA, Petrov AM, Grigoriev PN, et al. Amyotrophic lateral sclerosis: modern concepts of pathogenesis and experimental models. Journal of Higher Nervous Activity. 2018:68(5):551–567. doi: 10.1134/S0044467718050106
  9. Deng HX, Chen W, Hong ST, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477(7363):211–215. doi: 10.1038/nature10353
  10. Stewart H, Rutherford NJ, Briemberg H, et al. Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p. Acta Neuropathol. 2012;123(3):409–417. doi: 10.1007/s00401-011-0937-5
  11. Wu CH, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012;488(7412):499–503. doi: 10.1038/nature11280
  12. Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17(1):17–23. doi: 10.1038/nn.3584
  13. Elden AC, Kim HJ, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466(7310):1069–1075. doi: 10.1038/nature09320
  14. Goutman SA, Hardiman O, Al-Chalabi A, et al. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 2022;21(5):465–479. doi: 10.1016/S1474-4422(21)00414-2
  15. Mammana S, Fagone P, Cavalli E, et al. The role of macrophages in neuroinflammatory and neurodegenerative pathways of Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis: pathogenetic cellular effectors and potential therapeutic targets. Int J Mol Sci. 2018;19(3):831. doi: 10.3390/ijms19030831
  16. Steinruecke M, Lonergan RM, Selvaraj BT, et al. Blood-CNS barrier dysfunction in amyotrophic lateral sclerosis: proposed mechanisms and clinical implications. J Cereb Blood Flow Metab. 2023;43(5):642–654. doi: 10.1177/0271678X231153281
  17. Wang R, Yang B, Zhang D. Activation of interferon signaling pathways in spinal cord astrocytes from an ALS mouse model. Glia. 2011;59(6):946–958. doi: 10.1002/glia.21167
  18. Källstig E, McCabe BD, Schneider BL. The links between ALS and NF-κB. Int J Mol Sci. 2021;22(8):3875. doi: 10.3390/ijms22083875
  19. Maruyama H, Morino H, Ito H, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465(7295):223–226. doi: 10.1038/nature08971
  20. Wang W, Li L, Lin WL, et al. The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum Mol Genet. 2013;22(23):4706–4719. doi: 10.1093/hmg/ddt319
  21. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–133. doi: 10.1126/science.1134108
  22. Xie M, Liu YU, Zhao S, et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nat Neurosci. 2022;25(1):26–38. doi: 10.1038/s41593-021-00975-6
  23. Yu CH, Davidson S, Harapas CR, et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell. 2020;183(3):636–649.e18. doi: 10.1016/j.cell.2020.09.020
  24. Szego EM, Malz L, Bernhardt N, et al. Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice. Elife. 2022;11:e81943. doi: 10.7554/eLife.81943
  25. Zhao B, Xu P, Rowlett CM, et al. The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature. 2020;587(7835):673–677. doi: 10.1038/s41586-020-2749-z
  26. Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation. Science. 2019; 363(6431):eaat8657. doi: 10.1126/science.aat8657
  27. Zhang C, Shang G, Gui X, et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature. 2019;567(7748):394–398. doi: 10.1038/s41586-019-1000-2
  28. Van Damme P, Robberecht W. STING-induced inflammation — a novel therapeutic target in ALS? N Engl J Med. 2021;384(8):765–767. doi: 10.1056/NEJMcibr2031048
  29. McCauley ME, O’Rourke JG, Yáñez A, et al. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature. 2020;585(7823):96–101. doi: 10.1038/s41586-020-2625-x
  30. Wang L, Wen M, Cao X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science. 2019; 365(6454):eaav0758. doi: 10.1126/science.aav0758
  31. Xiao S, Cao S, Huang Q, et al. The RNA N6-methyladenosine modification landscape of human fetal tissues. Nat Cell Biol. 2019;21(5):651–661. doi: 10.1038/s41556-019-0315-4
  32. Tank EM, Figueroa-Romero C, Hinder LM, et al. Abnormal RNA stability in amyotrophic lateral sclerosis. Nat Commun. 2018;9(1):2845. doi: 10.1038/s41467-018-05049-z
  33. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608–624. doi: 10.1038/s41580-019-0168-5
  34. Huang H, Weng H, Chen J. The biogenesis and precise control of RNA m6A methylation. Trends Genet. 2020;36(1):44–52. doi: 10.1016/j.tig.2019.10.011
  35. McMillan M, Gomez N, Hsieh C, et al. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia. Mol Cell. 2023;83(2):219–236.e7. doi: 10.1016/j.molcel.2022.12.019
  36. Pineda SS, Lee H, Fitzwalter BE, et al. Single-cell profiling of the human primary motor cortex in ALS and FTLD. Cell. 2024;187(8):1971–1989.e16. doi: 10.1101/2021.07.07.451374
  37. Xiao W, Adhikari S, Dahal U, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016;61(4):507–519. doi: 10.1016/j.molcel.2016.01.012
  38. Edens BM, Vissers C, Su J, et al. FMRP modulates neural differentiation through m6A-dependent mRNA nuclear export. Cell Rep. 2019;28(4):845–854.e5. doi: 10.1016/j.celrep.2019.06.072
  39. Roundtree IA, Luo G-Z, Zhang Z, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 2017;6:e31311. doi: 10.7554/eLife.31311
  40. Choi J, Ieong K-W, Demirci H, et al. N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. 2016;23(2):110–115. doi: 10.1038/nsmb.3148
  41. Meyer KD, Patil DP, Zhou J, et al. 5′ UTR m(6)A promotes cap-independent translation. Cell. 2015;163(4):999–1010. doi: 10.1016/j.cell.2015.10.012
  42. Li Z, Zhao S, Nelakanti RV, et al. N6-methyladenine in DNA antagonizes SATB1 in early development. Nature. 2020;583(7817):625–630. doi: 10.1038/s41586-020-2500-9
  43. Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 2017;27(3):315–328. doi: 10.1038/cr.2017.15
  44. Wang X, Zhao BS, Roundtree IA, et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388–1399. doi: 10.1016/j.cell.2015.05.014
  45. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187–1200. doi: 10.1016/j.cell.2017.05.045
  46. Boulias K, Greer EL. Biological roles of adenine methylation in RNA. Nat Rev Genet. 2023;24(3):143–160. doi: 10.1038/s41576-022-00534-0
  47. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31–42. doi: 10.1038/nrm.2016.132
  48. Cui L, Ma R, Cai J, et al. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther. 2022;7(1):334. doi: 10.1038/s41392-022-01175-9
  49. Zhu X, Tang H, Yang M, Yin K. N6-methyladenosine in macrophage function: a novel target for metabolic diseases. Trends Endocrinol Metab. 2023;34(2):66–84. doi: 10.1016/j.tem.2022.12.006
  50. Winkler R, Gillis E, Lasman L, et al. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol. 2019;20(2):173–182. doi: 10.1038/s41590-018-0275-z
  51. Tong J, Wang X, Liu Y, et al. Pooled CRISPR screening identifies m6A as a positive regulator of macrophage activation. Sci Adv. 2021;7(18):eabd4742. doi: 10.1126/sciadv.abd4742
  52. Qin Y, Li B, Arumugam S, et al. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep. 2021;37(6):109968. doi: 10.1016/j.celrep.2021.109968
  53. Du J, Liao W, Liu W, et al. N6-adenosine methylation of socs1 mRNA is required to sustain the negative feedback control of macrophage activation. Dev Cell. 2020;55(6):737–753.e7. doi: 10.1016/j.devcel.2020.10.023
  54. Rubio RM, Depledge DP, Bianco C, et al. RNA m6A modification enzymes shape innate responses to DNA by regulating interferon β. Genes Dev. 2018;32(23-24):1472–1484. doi: 10.1101/gad.319475.118
  55. Zheng Q, Hou J, Zhou Y, et al. The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. Nat Immunol. 2017;18(10):1094–1103 doi: 10.1038/ni.3830
  56. Jara JH, Gautam M, Kocak N, et al. MCP1-CCR2 and neuroinflammation in the ALS motor cortex with TDP-43 pathology. J Neuroinflammation. 2019;16(1):196. doi: 10.1186/s12974-019-1589-y
  57. Humphrey J, Venkatesh S, Hasan R, et al. Integrative transcriptomic analysis of the amyotrophic lateral sclerosis spinal cord implicates glial activation and suggests new risk genes. Nat Neurosci. 2023;26(1):150–162. doi: 10.1038/s41593-022-01205-3
  58. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiol Aging. 2008;29(11):1754–1762. doi: 10.1016/j.neurobiolaging.2007.04.013
  59. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18(4):225–242. doi: 10.1038/nri.2017.125
  60. Butovsky O, Weiner HL. Microglial signatures and their role in health and disease. Nat Rev Neurosci. 2018;19(10):622–635. doi: 10.1038/s41583-018-0057-5
  61. Alshikho MJ, Zürcher NR, Loggia ML, et al. Integrated magnetic resonance imaging and [11C]‐PBR28 positron emission tomographic imaging in amyotrophic lateral sclerosis. Ann Neurol. 2018;83(6):1186–1197. doi: 10.1002/ana.25251
  62. Tondo G, Iaccarino L, Cerami C, et al. 11 C‐PK11195 PET–based molecular study of microglia activation in SOD1 amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2020;7(9):1513–1523. doi: 10.1002/acn3.51112
  63. Brettschneider J, Libon DJ, Toledo JB, et al. Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol. 2012;123(3):395–407. doi: 10.1007/s00401-011-0932-x
  64. Gravel M, Béland L-C, Soucy G, et al. IL-10 сontrols early microglial phenotypes and disease onset in ALS caused by misfolded superoxide dismutase 1. J Neurosci. 2016;36(3):1031–1048. doi: 10.1523/JNEUROSCI.0854-15.2016
  65. Spiller KJ, Restrepo CR, Khan T, et al. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci. 2018;21(3):329–340. doi: 10.1038/s41593-018-0083-7
  66. Svahn AJ, Don EK, Badrock AP, et al. Nucleo-cytoplasmic transport of TDP-43 studied in real time: impaired microglia function leads to axonal spreading of TDP-43 in degenerating motor neurons. Acta Neuropathol. 2018;136(3):445–459. doi: 10.1007/s00401-018-1875-2
  67. Chiu IM, Morimoto ETA, Goodarzi H, et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 2013;4(2):385–401. doi: 10.1016/j.celrep.2013.06.018
  68. Zhao W, Beers DR, Henkel JS, et al. Extracellular mutant SOD1 induces microglial‐mediated motoneuron injury. Glia. 2010;58(2):231–243. doi: 10.1002/glia.20919
  69. Deora V, Lee JD, Albornoz EA, et al. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia. 2020;68(2):407–421. doi: 10.1002/glia.23728
  70. LaClair KD, Zhou Q, Michaelsen M, et al. Congenic expression of poly-GA but not poly-PR in mice triggers selective neuron loss and interferon responses found in C9orf72 ALS. Acta Neuropathol. 2020;140(2):121–142. doi: 10.1007/s00401-020-02176-0
  71. Vahsen BF, Gray E, Thompson AG, et al. Non-neuronal cells in amyotrophic lateral sclerosis — from pathogenesis to biomarkers. Nat Rev Neurol. 2021;17(6):333–348. doi: 10.1038/s41582-021-00487-8
  72. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21(10):1359–1369. doi: 10.1038/s41593-018-0242-x
  73. Clarke LE, Liddelow SA, Chakraborty C, Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A. 2018; 115(8):E1896–E1905. doi: 10.1073/pnas.1800165115
  74. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487. doi: 10.1038/nature21029
  75. Serio A, Bilican B, Barmada SJ, et al. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci U S A. 2013;110(12):4697–4702. doi: 10.1073/pnas.1300398110
  76. Gong YH, Parsadanian AS, Andreeva A, et al. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J Neurosci. 2000;20(2):660–665. doi: 10.1523/JNEUROSCI.20-02-00660.2000
  77. Guttenplan KA, Weigel MK, Adler DI, et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun. 2020;11(1):3753. doi: 10.1038/s41467-020-17514-9
  78. Wang L, Gutmann DH, Roos RP. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum Mol Genet. 2011;20(2):286–293. doi: 10.1093/hmg/ddq463
  79. Yamanaka K, Chun SJ, Boillee S, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci. 2008;11(3):251–253. doi: 10.1038/nn2047
  80. Haidet-Phillips AM, Hester ME, Miranda CJ, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol. 2011;29(9):824–828. doi: 10.1038/nbt.1957
  81. Huang C, Huang B, Bi F, et al. Profiling the genes affected by pathogenic TDP‐43 in astrocytes. J Neurochem. 2014;129(6):932–939. doi: 10.1111/jnc.12660
  82. Lepore AC, Rauck B, Dejea C, et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci. 2008;11(11):1294–1301. doi: 10.1038/nn.2210
  83. Endo F, Komine O, Fujimori-Tonou N, et al. Astrocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T сells. Cell Rep. 2015;11(4):592–604. doi: 10.1016/j.celrep.2015.03.053
  84. Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007;10(5):615–622. doi: 10.1038/nn1876
  85. Papadeas ST, Kraig SE, O’Banion C, et al. Astrocytes carrying the superoxide dismutase 1 (SOD1 G93A) mutation induce wild-type motor neuron degeneration in vivo. Proc Natl Acad Sci U S A. 2011;108(43):17803–17808. doi: 10.1073/pnas.1103141108
  86. Birger A, Ben-Dor I, Ottolenghi M, et al. Human iPSC-derived astrocytes from ALS patients with mutated C9ORF72 show increased oxidative stress and neurotoxicity. EBioMedicine. 2019;50:274–289. doi: 10.1016/j.ebiom.2019.11.026
  87. Tong J, Huang C, Bi F, et al. Expression of ALS-linked TDP-43 mutant in astrocytes causes non-cell-autonomous motor neuron death in rats. EMBO J. 2013;32(13):1917–1926. doi: 10.1038/emboj.2013.122
  88. Allen SP, Hall B, Woof R, et al. C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis. Brain. 2019;142(12):3771–3790. doi: 10.1093/brain/awz302
  89. Allen SP, Hall B, Castelli LM, et al. Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain. 2019;142(3):586–605. doi: 10.1093/brain/awy353
  90. Du Y, Zhao W, Thonhoff JR, et al. Increased activation ability of monocytes from ALS patients. Exp Neurol. 2020;328:113259. doi: 10.1016/j.expneurol.2020.113259
  91. Chiot A, Zaïdi S, Iltis C, et al. Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival. Nat Neurosci. 2020;23:1339–1351. doi: 10.1038/s41593-020-00718-z
  92. Murdock BJ, Zhou T, Kashlan SR, et al. Correlation of peripheral immunity with rapid amyotrophic lateral sclerosis progression. JAMA Neurol. 2017;74(12):1446–1454. doi: 10.1001/jamaneurol.2017.2255
  93. Beers DR, Henkel JS, Zhao W, et al. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A. 2008;105(40):15558–15563. doi: 10.1073/pnas.0807419105
  94. Chiu IM, Chen A, Zheng Y, et al. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A. 2008;105(46):17913–17918. doi: 10.1073/pnas.0804610105
  95. Henkel JS, Beers DR, Wen S, et al. Regulatory T‐lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol Med. 2013;5(1):64–79. doi: 10.1002/emmm.201201544
  96. Sheean RK, McKay FC, Cretney E, et al. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis. JAMA Neurol. 2018;75(6):681–689. doi: 10.1001/jamaneurol.2018.0035
  97. Beers DR, Zhao W, Wang J, et al. ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight. 2017;2(5):e89530. doi: 10.1172/jci.insight.89530
  98. Beers DR, Henkel JS, Zhao W, et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain. 2011;134(Pt 5):1293–1314. doi: 10.1093/brain/awr074
  99. Cui C, Ingre C, Yin L, et al. Correlation between leukocyte phenotypes and prognosis of amyotrophic lateral sclerosis. Elife. 2022;11:e74065. doi: 10.7554/eLife.74065
  100. Murdock BJ, Famie JP, Piecuch CE, et al. Natural killer cells associate with amyotrophic lateral sclerosis in a sex- and age-dependent manner. JCI Insight. 2021;6(11):e147129. doi: 10.1172/jci.insight.147129
  101. Song S, Miranda CJ, Braun L, et al. Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis. Nat Med. 2016;22(4):397–403. doi: 10.1038/nm.4052
  102. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–274. doi: 10.1146/annurev.immunol.23.021704.115526
  103. Figueroa-Romero C, Monteagudo A, Murdock BJ, et al. Tofacitinib suppresses natural killer cells in vitro and in vivo: implications for amyotrophic lateral sclerosis. Front Immunol. 2022;13:773288. doi: 10.3389/fimmu.2022.773288
  104. Lam MA, Hemley SJ, Najafi E, et al. The ultrastructure of spinal cord perivascular spaces: implications for the circulation of cerebrospinal fluid. Sci Rep. 2017;7(1):12924. doi: 10.1038/s41598-017-13455-4
  105. Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, et al. Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Res. 2007;1157:126–137. doi: 10.1016/j.brainres.2007.04.044
  106. Reinhold A, Rittner H. Barrier function in the peripheral and central nervous system — a review. Pflugers Arch. 2017;469(1):123–134. doi: 10.1007/s00424-016-1920-8
  107. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood–spinal cord barrier: morphology and clinical implications. Ann Neurol. 2011;70(2):194–206. doi: 10.1002/ana.22421
  108. Katsuno T, Umeda K, Matsui T, et al. Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell. 2008;19(6):2465–2475. doi: 10.1091/mbc.e07-12-1215
  109. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood–spinal cord barrier: morphology and clinical implications. Ann Neurol. 2011;70(2):194–206. doi: 10.1002/ana.22421
  110. Sauer R, Kirchner J, Yang S, et al. Blood–spinal cord barrier breakdown and pericyte deficiency in peripheral neuropathy. Ann N Y Acad Sci. 2017;1405(1):71–88. doi: 10.1111/nyas.13436
  111. Bauer H-C, Krizbai IA, Bauer H, Traweger A. “You Shall Not Pass” — tight junctions of the blood brain barrier. Front Neurosci. 2014;8:392. doi: 10.3389/fnins.2014.00392
  112. Sauer R, Kirchner J, Yang S, et al. Blood–spinal cord barrier breakdown and pericyte deficiency in peripheral neuropathy. Ann N Y Acad Sci. 2017;1405(1):71–88. doi: 10.1111/nyas.13436
  113. Bell RD, Winkler EA, Sagare AP, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68(3):409–427. doi: 10.1016/j.neuron.2010.09.043
  114. Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–561. doi: 10.1038/nature09522
  115. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–566. doi: 10.1038/nature09513
  116. Garbuzova-Davis S, Saporta S, Haller E, et al. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One. 2007;2(11)e1205. doi: 10.1371/journal.pone.0001205
  117. Whetstone WD, Hsu JC, Eisenberg M, et al. Blood‐spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res. 2003;74(2):227–239. doi: 10.1002/jnr.10759
  118. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood–spinal cord barrier: morphology and clinical implications. Ann Neurol. 2011;70(2):194–206. doi: 10.1002/ana.22421
  119. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood–brain barrier. Nat Med. 2013;19(12):1584–1596. doi: 10.1038/nm.3407
  120. Хабибрахманов А.Н., Мухамедьяров М.А., Богданов Э.И. Биомаркеры бокового амиотрофического склероза. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022;122(5):30–35. Khabibrakhmanov AN, Mukhamedyarov MA, Bogdanov EI. Biomarkers of amyotrophic lateral sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5):30–35. doi: 10.17116/jnevro202212205130
  121. Zhao W, Beers DR, Henkel JS, et al. Extracellular mutant SOD1 induces microglial‐mediated motoneuron injury. Glia. 2010;58(2):231–243. doi: 10.1002/glia.20919
  122. Deora V, Lee JD, Albornoz EA, et al. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia. 2020;68(2):407–421. doi: 10.1002/glia.23728
  123. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487. doi: 10.1038/nature21029
  124. Lewandowski SA, Nilsson I, Fredriksson L, et al. Presymptomatic activation of the PDGF-CC pathway accelerates onset of ALS neurodegeneration. Acta Neuropathol. 2016;131(3):453–464. doi: 10.1007/s00401-015-1520-2
  125. Zhong Z, Deane R, Ali Z, et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci. 2008;11(4):420–422. doi: 10.1038/nn2073
  126. Garbuzova-Davis S, Haller E, Saporta S, et al. Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Res. 2007;1157:126–137. doi: 10.1016/j.brainres.2007.04.044
  127. Yamadera M, Fujimura H, Inoue K, et al. Microvascular disturbance with decreased pericyte coverage is prominent in the ventral horn of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(5-6):393–401. doi: 10.3109/21678421.2015.1011663
  128. Miyazaki K, Ohta Y, Nagai M, et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res. 2011;89(5):718–728. doi: 10.1002/jnr.22594
  129. Guttenplan KA, Weigel MK, Adler DI, et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun. 2020;11(1):3753. doi: 10.1038/s41467-020-17514-9
  130. Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci. 2015;16(5):249–263. doi: 10.1038/nrn3898
  131. Wang Y, Jin S, Sonobe Y, et al. Interleukin-1β induces blood–brain barrier disruption by downregulating sonic hedgehog in astrocytes. PLoS One. 2014;9(10):e110024. doi: 10.1371/journal.pone.0110024
  132. Łukaszewicz-Zając M, Mroczko B, Słowik A. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in amyotrophic lateral sclerosis (ALS). J Neural Transm. 2014;121(11):1387–1397. doi: 10.1007/s00702-014-1205-3
  133. Miyazaki K, Ohta Y, Nagai M, et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res. 2011;89(5):718–728. doi: 10.1002/jnr.22594
  134. Zamudio F, Loon AR, Smeltzer S, et al. TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote neurodegeneration in a low-grade systemic inflammation mouse model. J Neuroinflammation. 2020;17(1):283. doi: 10.1186/s12974-020-01952-9
  135. Waters S, Swanson MEV, Dieriks BV, et al. Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathol Commun. 2021;9(1):144. doi: 10.1186/s40478-021-01244-0
  136. Mirian A, Moszczynski A, Soleimani S, et al. Breached barriers: a scoping review of blood-central nervous system barrier pathology in amyotrophic lateral sclerosis. Front Cell Neurosci. 2022;16:851563. doi: 10.3389/fncel.2022.851563
  137. Chopra N, Menounos S, Choi JP, et al. Blood-spinal cord barrier: its role in spinal disorders and emerging therapeutic strategies. NeuroSci. 2021;3(1):1–27. doi: 10.3390/neurosci3010001
  138. Pan Y, Nicolazzo JA. Altered blood–brain barrier and blood–spinal cord barrier dynamics in amyotrophic lateral sclerosis: impact on medication efficacy and safety. Br J Pharmacol. 2022;179(11):2577–2588. doi: 10.1111/bph.15802

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Averchuk E.S., Salmina A.B., Akhmadieva L.A., Mukhamedyarov M.A., Illarioshkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).