Mitochondrial fission as a target for supressing aberrant neuroplasticity and degeneration in the hippocampus

Cover Page

Cite item

Abstract

Introduction. Mdivi-1, an inhibitor of mitochondrial fission, has neuroprotective potential and can modulate pathological neuroplasticity, which is of interest for developing pharmacological therapies for mesial temporal lobe epilepsy.

The aim of this study is to summarize the results of a series of experiments with mdivi-1 on a model of kainate-induced hippocampal damage and evaluate the prospects of modulating mitochondrial dynamics to suppress neurodegeneration and aberrant plasticity.

Materials and methods. Wistar rats received kainic acid injections into the hippocampus and mdivi-1 into the lateral cerebral ventricles. Immunomorphological assessment included evaluation of proliferation and differentiation (using BrdU), maturation and damage of granule layer hippocampal neurons (assessing numbers of NeuN- and DCX-positive cells), glial reaction, and changes in mitochondrial dynamics (dynamin-related protein and mitofusin 2). The animals’ ability for novel object recognition and response to photostimulation were studied.

Results. Mdivi-1 showed no neuroprotective effect on mature hippocampal neurons following kainic acid administration, but reduced microglial activation in the dentate gyrus without affecting reactive astrogliosis. Mdivi-1 also suppressed maturation and differentiation of granule layer hippocampal neurons in both control animals and the kainate model, but no positive behavioral effects of mdivi-1 exposure were observed.

Conclusion. The data indicate the potential of modulating aberrant neurogenesis through inhibition of mitochondrial division; however, the practical prospects of using mdivi-1 for addressing abnormal processes in the hippocampus are limited by the multiplicity of mdivi-1 effects on different hippocampal cell populations and the complexity of their control.

About the authors

Dmitry N. Voronkov

Russian Center of Neurology and Neurosciences

Author for correspondence.
Email: voronkov@neurology.ru
ORCID iD: 0000-0001-5222-5322

Cand. Sci. (Med.), senior researcher, Laboratory of neuromorphology

Russian Federation, Moscow

Evgenia N. Fedorova

Russian Center of Neurology and Neurosciences; Pirogov Russian National Research Medical University

Email: ewgenia.feodorowa2011@yandex.ru
ORCID iD: 0000-0002-2128-9056

junior researcher, Laboratory of neuromorphology, Russian Center of Neurology and Neuroscience, assistant, Department of morphology, Institute of Anatomy and Morphology named after Acad.Yu. M. Lopukhin

Russian Federation, Moscow; Moscow

Anastasia K. Pavlova

Russian Center of Neurology and Neurosciences

Email: pav_nastasya@mail.ru
ORCID iD: 0009-0006-5653-5524

research assistant, Laboratory of experimental pathology of nervous system and neuropharmacology

Russian Federation, Moscow

Maria S. Ryabova

Russian Center of Neurology and Neurosciences

Email: voronkov@neurology.ru
ORCID iD: 0009-0003-5596-7630

research assistant, Laboratory of neuromorphology

Russian Federation, Moscow

Anna V. Egorova

Russian Center of Neurology and Neurosciences; Pirogov Russian National Research Medical University

Email: av_egorova@bk.ru
ORCID iD: 0000-0001-7112-2556

Cand. Sci. (Med.), researcher, Laboratory of neuromorphology, Associate Professor, Department of morphology, Institute of Anatomy and Morphology named after Acad. Yu. M. Lopukhin

Russian Federation, Moscow; Moscow

Alla V. Stavrovskaya

Russian Center of Neurology and Neurosciences

Email: alla_stav@mail.ru
ORCID iD: 0000-0002-8689-0934

Cand. Sci. (Biol.), Head, Laboratory of experimental pathology of nervous system and neuropharmacology Brain Institute

Russian Federation, Moscow

Ivan A. Potapov

Russian Center of Neurology and Neurosciences

Email: potapov.i.a@neurology.ru
ORCID iD: 0000-0002-7471-3738

junior researcher, Laboratory of experimental pathology of nervous system and neuropharmacology Brain Institute

Russian Federation, Moscow

Vladimir S. Sukhorukov

Russian Center of Neurology and Neurosciences; Pirogov Russian National Research Medical University

Email: voronkov@neurology.ru
ORCID iD: 0000-0002-0552-6939

Dr. Sci. (Med.), Professor, Head, Laboratory of neuromorphology, Department of morphology, Institute of Anatomy and Morphology named after Acad. Yu. M. Lopukhin

Russian Federation, Moscow; Moscow

References

  1. Shen Y, Jiang WL, Li X, et al. Mitochondrial dynamics in neurological diseases: a narrative review. Annals of translational medicine. 2023;11(6):264. doi: 10.21037/atm-22-2401
  2. Bartolomei F, Makhalova J, Benoit J, Lagarde S. The different subtypes of temporal lobe seizures networks. Rev Neurol (Paris). 2025;181(5):368–381. doi: 10.1016/j.neurol.2025.03.004
  3. Rusina E, Bernard C, Williamson A. The kainic acid models of temporal lobe epilepsy. eNeuro. 2021;8(2):ENEURO.0337-20.2021. doi: 10.1523/ENEURO.0337-20.2021
  4. Шубина Л.В., Мальков А.Е., Кичигина В.Ф. Каиновая модель височной эпилепсии и её применение для изучения роли эндоканнабиноидной системы в нейропротекции. Росcийский физиологический журнал им. И.М. Сеченова. 2019;105(6):680–693. Shubina L, Malkov A, Kitchigina VF. The kainic acid model of temporal lobe epilepsy and its application for studying the role of the endocannabinoid system in neuroprotection. Russian Journal of Physiology. 2019;105(6):680–693. doi: 10.1134/S0869813919060062
  5. Воронков Д.Н., Егорова А.В., Федорова Е.Н. и др. Иммуноморфологическая оценка изменений функциональных белков астроглии на индуцированной каинатом модели склероза гиппокампа. Анналы клинической и экспериментальной неврологии. 2024;18(2):34–44. Voronkov D, Egorova A, Fedorova EN, et al. Immunomorphologic assessment of changes in functional astroglial proteins in a kainate-induced hippocampal sclerosis model. Annals of Clinical and Experimental Neurology. 2024;18(2):34–44. doi: 10.17816/ACEN.1102
  6. Godale CM, Danzer SC. Signaling pathways and cellular mechanisms regulating mossy fiber sprouting in the development of epilepsy. Front Neurol. 2018;9:298. doi: 10.3389/fneur.2018.00298
  7. Danzer SC. Contributions of adult-generated granule cells to hippocampal pathology in temporal lobe epilepsy: a neuronal bestiary. Brain Plast. 2018;3(2):169–181. doi: 10.3233/BPL-170056
  8. Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 2010;88(1):23–45. doi: 10.1016/j.eplepsyres.2009.09.020
  9. Hu C, Huang Y, Li L. Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. Int J Mol Sci. 2017;18(1):144. doi: 10.3390/ijms18010144
  10. Zanfardino P, Amati A, Perrone M, Petruzzella V. The balance of MFN2 and OPA1 in mitochondrial dynamics, cellular homeostasis, and disease. Biomolecules. 2025;15(3):433. doi: 10.3390/biom15030433
  11. Arrázola MS, Andraini T, Szelechowski M. et al. Mitochondria in developmental and adult neurogenesis. Neurotox Res. 2019;36(2):257–267. doi: 10.1007/s12640-018-9942-y
  12. Liu X, Zhang Z, Li D, et al. DNM1L-related mitochondrial fission defects presenting as encephalopathy: a case report and literature review. Front Pediatr. 2021;9:626657. doi: 10.3389/fped.2021.626657
  13. Luo Z, Wang J, Tang S, et al. Dynamic-related protein 1 inhibitor eases epileptic seizures and can regulate equilibrative nucleoside transporter 1 expression. BMC Neurol. 2020;20(1):353. doi: 10.1186/s12883-020-01921-y
  14. Rappold PM, Cui M, Grima JC, et al. Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nat Commun. 2014;5:5244. doi: 10.1038/ncomms6244
  15. Nhu NT, Li Q, Liu Y et al. Effects of Mdivi-1 on neural mitochondrial dysfunction and mitochondria-mediated apoptosis in ischemia-reperfusion injury after stroke: a systematic review of preclinical studies. Front Mol Neurosci. 2021;14:778569. doi: 10.3389/fnmol.2021.778569
  16. Ruiz A, Alberdi E, Matute C. Mitochondrial Division Inhibitor 1 (mdivi-1) protects neurons against excitotoxicity through the modulation of mitochondrial function and intracellular Ca2⁺ signaling. Front Mol Neurosci. 2018;11:3. doi: 10.3389/fnmol.2018.00003
  17. Воронков Д.Н., Ставровская А.В., Павлова А.К. и др. Множественные эффекты ингибитора деления митохондрий mdivi-1 на гранулярные нейроны зубчатой извилины гиппокампа крыс. Клиническая экспериментальная морфология. 2025;14(3):58–71. Voronkov DN, Stavrovskaya AV, Pavlova AK, et al. Multiple effects of mitochondrial division inhibitor mdivi-1 on granular neurons of the dentate gyrus in rats. Clinical experimental morphology. 2025;14(3):58–71. doi: 10.31088/CEM2025.14.3.58-71
  18. Bordt EA, Clerc P, Roelofs BA, et al. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex i inhibitor that modulates reactive oxygen species. Dev Cell. 2017;40(6):583–594.e6. doi: 10.1016/j.devcel.2017.02.020
  19. Liu X, Song L, Yu J, et al. Mdivi-1: a promising drug and its underlying mechanisms in the treatment of neurodegenerative diseases. Histol Histopathol. 2022;37(6):505–512. doi: 10.14670/HH-18-443
  20. Gu X, Chen W, Li Z, et al. Drp1 mitochondrial fission in astrocyte modulates behavior and neuroinflammation during morphine addiction. J Neuroinflammation. 2025;22:108. doi: 10.1186/s12974-025-03438-y
  21. Ruiz A, Quintela-López T, Sánchez-Gómez MV, et al. Mitochondrial division inhibitor 1 disrupts oligodendrocyte Ca2+ homeostasis and mitochondrial function. Glia. 2020;68(9):1743–1756. doi: 10.1002/glia.23802
  22. Воронков Д.Н., Егорова А.В., Федорова Е.Н. и др. Каинат-индуцированная реорганизация зубчатой извилины гиппокампа сопровождается активацией деления митохондрий в нейронах зернистого слоя. Бюллетень экспериментальной биологии и медицины. 2024;178(7):110–115. Voronkov DN, Egorova AV, Fedorova EN, et al. Kainate-induced reorganization the dentate gyrus of the hippocampus is accompanied by activation of mitochondrial fission in the granular layer neurons. Bull Exp Biol Med. 2024;178(1):96–100. doi: 10.1007/s10517-024-06289-4
  23. Bonzano S, Dallorto E, Bovetti S, et al. Mitochondrial regulation of adult hippocampal neurogenesis: Insights into neurological function and neurodevelopmental disorders. Neurobiol Dis. 2024;199:106604. doi: 10.1016/j.nbd.2024.106604
  24. Uhlrich DJ, Manning KA, O’Laughlin ML, Lytton WW. Photic-induced sensitization: acquisition of an augmenting spike-wave response in the adult rat through repeated strobe exposure. J Neurophysiol. 2005;94(6):3925–3937. doi: 10.1152/jn.00724.2005
  25. Marx N, Ritter N, Disse P, et al. Detailed analysis of Mdivi-1 effects on complex I and respiratory supercomplex assembly. Sci Rep. 2024;14(1):19673. doi: 10.1038/s41598-024-69748-y
  26. Plümpe T, Ehninger D, Steiner B, et al. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation. BMC Neurosci. 2006;7:77. doi: 10.1186/1471-2202-7-77
  27. Chen SD, Zhen YY, Lin JW, et al. Dynamin-Related protein 1 promotes mitochondrial fission and contributes to the hippocampal neuronal cell death following experimental status epilepticus. CNS Neurosci Ther. 2016;22(12):988–999. doi: 10.1111/cns.12600
  28. Ko AR, Hyun HW, Min SJ, Kim JE. The differential DRP1 phosphorylation and mitochondrial dynamics in the regional specific astroglial death induced by status epilepticus. Front Cell Neurosci. 2016;10:124. doi: 10.3389/fncel.2016.00124
  29. Rintoul GL, Filiano AJ, Brocard JB, et al. Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci. 2003;23(21):7881–7888. doi: 10.1523/JNEUROSCI.23-21-07881.2003
  30. Cereghetti GM, Stangherlin A, Martins de Brito O, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A. 2008;105(41):15803–15808. doi: 10.1073/pnas.0808249105
  31. Schouten M, Bielefeld P, Fratantoni SA, et al. Multi-omics profile of the mouse dentate gyrus after kainic acid-induced status epilepticus. Sci Data. 2016;3:160068. doi: 10.1038/sdata.2016.68
  32. Kim H, Lee JY, Park KJ, et al. A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death. BMC Neurosci. 2016;17(1):33. doi: 10.1186/s12868-016-0270-y
  33. Gómez-Oliver F, Fernández de la Rosa R, Brackhan M, et al. Inhibition of astrocyte reactivity by Mdivi-1 after status epilepticus in rats exacerbates microglia-mediated neuroinflammation and impairs limbic-cortical glucose metabolism. Biomolecules. 2025;15(9):1242. doi: 10.3390/biom15091242
  34. Park J, Choi H, Min JS, et al. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem. 2013;127(2):221–232. doi: 10.1111/jnc.12361
  35. Ying J, Deng X, Du R, et al. Mitochondrial modulation treating postoperative cognitive dysfunction neuroprotection via DRP1 inhibition by Mdivi1. Sci Rep. 2024;14(1):26155. doi: 10.1038/s41598-024-75548-1
  36. Perez EL, Lauritzen F, Wang Y, et al. Evidence for astrocytes as a potential source of the glutamate excess in temporal lobe epilepsy. Neurobiol Dis. 2012;47(3):331–337. doi: 10.1016/j.nbd.2012.05.010
  37. Luo C, Ikegaya Y, Koyama R. Microglia and neurogenesis in the epileptic dentate gyrus. Neurogenesis (Austin). 2016;3(1):e1235525. doi: 10.1080/23262133.2016.1235525
  38. Moura DMS., de Sales IRP, Brandão JA, et al. Disentangling chemical and electrical effects of status epilepticus-induced dentate gyrus abnormalities. Epilepsy Behav. 2021;121(Pt B):106575. doi: 10.1016/j.yebeh.2019.106575
  39. Puhahn-Schmeiser B, Kleemann T, Jabbarli R, et al. Granule cell dispersion in two mouse models of temporal lobe epilepsy and reeler mice is associated with changes in dendritic orientation and spine distribution. Hippocampus. 2022;32(7):517–528. doi: 10.1002/hipo.23447
  40. Schmeiser B, Zentner J, Prinz M, et al. Extent of mossy fiber sprouting in patients with mesiotemporal lobe epilepsy correlates with neuronal cell loss and granule cell dispersion. Epilepsy Res. 2017; 129:51–58. doi: 10.1016/j.eplepsyres.2016.11.011
  41. Moura DMS, Brandão JA, Lentini C. et al. Evidence of progenitor cell lineage rerouting in the adult mouse hippocampus after status epilepticus. Front Neurosci. 2020;14:571315. doi: 10.3389/fnins.2020.571315
  42. Kim HJ, Shaker MR, Cho B. et al. Dynamin-related protein 1 controls the migration and neuronal differentiation of subventricular zone-derived neural progenitor cells. Sci Rep. 2015;5:15962. doi: 10.1038/srep15962
  43. Kralic JE, Ledergerber DA, Fritschy JM. Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures. Eur J Neurosci. 2005;22(8):1916–1927. doi: 10.1111/j.1460-9568.2005.04386.x
  44. Matsuda T, Murao N, Katano Y. et al. TLR9 signalling in microglia attenuates seizure-induced aberrant neurogenesis in the adult hippocampus. Nat Commun. 2015;6:6514. doi: 10.1038/ncomms7514
  45. Khacho M, Clark A, Svoboda DS. et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell. 2016;19(2):232–247. doi: 10.1016/j.stem.2016.04.015
  46. Dong H, Csernansky CA, Goico B, Csernansky JG. Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. J Neurosci. 2003;23(5):1742–1749. doi: 10.1523/JNEUROSCI.23-05-01742.2003
  47. Kron MM, Zhang H, Parent JM. The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity. J Neurosci. 2010;30(6):2051–2059. doi: 10.1523/JNEUROSCI.5655-09.2010
  48. Iyengar SS, LaFrancois JJ, Friedman D. et al. Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp Neurol. 2015;264:135–149. doi: 10.1016/j.expneurol.2014.11.009
  49. Jain S, LaFrancois JJ, Botterill JJ. et al. Adult neurogenesis in the mouse dentate gyrus protects the hippocampus from neuronal injury following severe seizures. Hippocampus. 2019;29(8):683–709. doi: 10.1002/hipo.23062
  50. Gröticke I, Hoffmann K, Löscher W. Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Exp Neurol. 2007;207(2):329–349. doi: 10.1016/j.expneurol.2007.06.021
  51. Guarino A, Pignata P, Lovisari F. et al. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol. 2024;15:1392977. doi: 10.3389/fneur.2024.1392977
  52. Carron S, Dezsi G, Ozturk E. et al. Cognitive deficits in a rat model of temporal lobe epilepsy using touchscreen-based translational tools. Epilepsia. 2019;60(8):1650–1660. doi: 10.1111/epi.16291

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Voronkov D.N., Fedorova E.N., Pavlova A.K., Ryabova M.S., Egorova A.V., Stavrovskaya A.V., Potapov I.A., Sukhorukov V.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).