Serum brain-derived neurotrophic factor and superoxide dismutase in post-stroke trunk control: a clinical correlation study

Cover Page

Cite item

Abstract

Introduction. Post-stroke trunk control is crucial for functional recovery; however, its relationship with neuroplasticity and oxidative stress biomarkers remains unclear. This study investigated whether serum brain-derived neurotrophic factor (BDNF) and superoxide dismutase (SOD) levels correlate with trunk performance in chronic stroke survivors undergoing rehabilitation.

Materials and methods. In this randomized controlled trial, 69 participants (aged 45–85 years, with a minimum of 6 months post-stroke) were randomized into one of four groups: trunk rehabilitation exercises, transcranial direct current stimulation, combined therapy, or conventional therapy (control). Serum BDNF and SOD were measured pre- and post-intervention. Trunk control was assessed using the Trunk Impairment Scale (TIS), Postural Assessment Stroke Scale (PASS), and Rivermead Mobility Index (RMI). Pearson correlations and group comparisons were analysed.

Results. BDNF showed moderate positive correlations with PASS (r = 0.368, p < 0.001) and TIS (r = 0.263; p = 0.015), but no association with RMI (p = 0.270). SOD exhibited no significant correlations with any outcome (all p > 0.05). The combined therapy group achieved greater TIS improvements versus controls (Δ = 4.2 ± 1.8 vs. 2.1 ± 1.2; p = 0.030), though biomarker levels did not differ significantly between the groups (BDNF: p = 0.120; SOD: p = 0.450).

Conclusion. Serum BDNF, but not SOD, may serve as a biomarker for trunk recovery in chronic stroke, supporting its role in neuroplasticity-mediated rehabilitation. The dissociation between functional improvements and biomarker responses suggests complex recovery mechanisms beyond peripheral biochemical changes. These findings highlight BDNF’s potential for stratifying rehabilitation strategies while underscoring the need for further research on temporal biomarker dynamics.

About the authors

Abdulkareem M. Umar

Universiti Sultan Zainal Abidin; Federal University Dutse

Email: abdulkareemu54@gmail.com
ORCID iD: 0009-0000-7732-532X

PhD candidate, Department of orthopedics and rehabilitation, Faculty of Medicine, physiotherapist, Department of human physiology

Malaysia, Kuala Terengganu; Jigawa, Nigeria

Mohd A. Sharifudin

Universiti Sultan Zainal Abidin

Author for correspondence.
Email: dr.ariff.s@gmail.com
ORCID iD: 0000-0002-6796-2904

M.B.B.S., M.Med., Head, Medicine and Healthcare Research Cluster, lecturer, Department of orthopedics and rehabilitation, Faculty of medicine

Malaysia, Kuala Terengganu

Naresh B. Raj

Universiti Sultan Zainal Abidin

Email: bnaresh@unisza.edu.my
ORCID iD: 0000-0003-3367-2914

PhD, physiotherapist, lecturer, School of rehabilitation science, Faculty of health sciences

Malaysia, Kuala Terengganu

Aisha A. Ahmad

Bayero University

Email: aaahmad.pth@buk.edu.ng
ORCID iD: 0000-0003-1864-7091

PhD candidate, physiotherapist, Department of physiotherapy, Faculty of allied health science

Nigeria, Kano

References

  1. Muhammad Umar A, Sharifudin MA, Ahmad AA, Raj NB. Superoxide dismutase as biomarker to curtail redox unbalance and improve trunk performance in post-stroke patients after neurorehabilitation: a scoping review. Mal J Med Health Sci. 2024;20(SUPP10):273–280. doi: 10.47836/mjmhs.20.s10.31
  2. Bersano A, Gatti L. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2023;24(19):14848. doi: 10.3390/ijms241914848
  3. Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2020;21(20):7609. doi: 10.3390/ijms21207609
  4. Eng JJ, Chu KS. Reliability and comparison of weight-bearing ability during standing tasks for individuals with chronic stroke. Arch Phys Med Rehabil. 2002;83(8):1138–1144. doi: 10.1053/apmr.2002.33644
  5. Ciancarelli I, Morone G, Iosa M, et al. Influence of oxidative stress and inflammation on nutritional status and neural plasticity: new perspectives on post-stroke neurorehabilitative outcome. Nutrients. 2022;15(1):108. doi: 10.3390/nu15010108
  6. Siotto M, Germanotta M, Santoro M, et al. Oxidative stress status in post stroke patients: sex differences. Healthcare (Basel). 2022;10(5):869. doi: 10.3390/healthcare10050869
  7. Zheng F, Yan L, Zhong B, et al. Progression of cognitive decline before and after incident stroke. Neurology. 2019;93(1):e20–e28. doi: 10.1212/WNL.0000000000007716
  8. Flynn JM, Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med. 2013;62(1):4–12. doi: 10.1016/j.freeradbiomed.2013.05.027
  9. Muhammad Umar A, Sharifudin MA, Raj NB, Ahmad AA. Serum brain-derived neurotrophic factor (BDNF) enhancement through task-specific exercises and transcranial simulation: a randomised pilot controlled study in stroke survivors. Med & Health. 2024;19(2):468–484. doi: 10.17576/MH.2024.1902.09
  10. Navarro-López V, Molina-Rueda F, Jiménez-Jiménez S, et al. Effects of transcranial direct current stimulation combined with physiotherapy on gait pattern, balance, and functionality in stroke patients. a systematic review. Diagnostics (Basel). 2021;11(4):656. doi: 10.3390/diagnostics11040656
  11. Shah H, Khandare S, Siddapur T, et al. Effect of transcranial direct current stimulation on balance and stroke-specific quality of life in stroke patients. Annals of Physiotherapy & Occupational Therapy. 2021;3(4):1–5. doi: 10.23880/APhOT-16000176
  12. Yang CL, Gad A, Creath RA, et al. Effects of transcranial direct current stimulation (tDCS) on posture, movement planning, and execution during standing voluntary reach following stroke. J Neuroeng Rehabil. 2021;18(1):5. doi: 10.1186/s12984-020-00799-8
  13. Cramer SC, Sur M, Dobkin BH, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(Pt 6):1591–1609. doi: 10.1093/brain/awr039
  14. Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:363. doi: 10.3389/fncel.2019.00363
  15. Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci. 2018;19(11):3650. doi: 10.3390/ijms19113650
  16. Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204. doi: 10.1016/j.neuron.2010.03.035
  17. Klein AB, Williamson R, Santini MA, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14(3):347–353. doi: 10.1017/S1461145710000738
  18. Sun D, Sun X, Xu Y, et al. Superoxide dismutase activity and risk of cognitive decline in older adults: findings from the Chinese Longitudinal Healthy Longevity Survey. Exp Gerontol. 2019;118:72–77. doi: 10.1016/j.exger.2019.01.010
  19. Huang HF, Guo F, Cao YZ, et al. Neuroprotection by manganese superoxide dismutase (MnSOD) mimics: antioxidant effect and oxidative stress regulation in acute experimental stroke. CNS Neurosci Ther. 2012;18(10):811–818. doi: 10.1111/j.1755-5949.2012.00380.x
  20. Spranger M, Krempien S, Schwab S, et al. Superoxide dismutase activity in serum of patients with acute cerebral ischemic injury. Correlation with clinical course and infarct size. Stroke. 1997;28(12):2425–2428. doi: 10.1161/01.str.28.12.2425
  21. Muhammad Umar A, Salihu AT, Ahmad AA, et al. Unveiling the potential of transcranial direct current stimulation in enhancing trunk motor control and balance in cerebrovascular accident survivors: a scoping review. Malaysian J Med Health Sci. 2024;20(Suppl 10):291–301.10.47836/mjmhs.20.s10.33
  22. Podda MV, Cocco S, Mastrodonato A, et al. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of BDNF expression. Sci Rep. 2016;6:22180. doi: 10.1038/srep22180
  23. Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical activity and brain health. Genes (Basel). 2019;10(9):720. doi: 10.3390/genes10090720
  24. Karthikbabu S, Chakrapani M, Ganeshan S, et al. A review on assessment and treatment of the trunk in stroke: a need or luxury. Neural Regen Res. 2012;7(25):1974–1977. doi: 10.3969/j.issn.1673-5374.2012.25.008
  25. Verheyden G, Nieuwboer A, De Wit L, et al. Trunk performance after stroke: an eye catching predictor of functional outcome. J Neurol Neurosurg Psychiatry. 2007;78(7):694–698. doi: 10.1136/jnnp.2006.101642
  26. Verheyden G, Nieuwboer A, Mertin J, et al. The Trunk Impairment Scale: a new tool to measure motor impairment of the trunk after stroke. Clin Rehabil. 2004;18(3):326–334. doi: 10.1191/0269215504cr733oa
  27. Kong KH, Ratha Krishnan R. Truncal impairment after stroke: clinical correlates, outcome and impact on ambulatory and functional outcomes after rehabilitation. Singapore Med J. 2021;62(2):87–91. doi: 10.11622/smedj.2019153
  28. Okuda Y, Owari G, Harada S, et al. Validity of functional assessment for control of trunk in patients with subacute stroke: a multicenter, cross-sectional study. J Phys Ther Sci. 2023;35(7):520–527. doi: 10.1589/jpts.35.520
  29. Ahmed U, Karimi H, Amir S, Ahmed A. Effects of intensive multiplanar trunk training coupled with dual-task exercises on balance, mobility, and fall risk in patients with stroke: a randomized controlled trial. J Int Med Res. 2021;49(11):3000605211059413. doi: 10.1177/03000605211059413
  30. Ishiwatari M, Honaga K, Tanuma A, et al. Trunk impairment as a predictor of activities of daily living in acute stroke. Front Neurol. 2021;12:665592. doi: 10.3389/fneur.2021.665592
  31. Beninato M, Portney LG, Sullivan PE. Using the International Classification of Functioning, Disability and Health as a framework to examine the association between falls and clinical assessment tools in people with stroke. Phys Ther. 2009;89(8):816–825. doi: 10.2522/ptj.20080160
  32. Estrada-Barranco C, Sanz-Esteban I, Giménez-Mestre MJ, et al. Predictive validity of the Postural Assessment Scale for Stroke (PASS) to classify the functionality in stroke patients: a retrospective study. J Clin Med. 2022;11(13):3771. doi: 10.3390/jcm11133771
  33. Estrada-Barranco C, Cano-de-la-Cuerda R, Abuín-Porras V, Molina-Rueda F. Postural assessment scale for stroke patients in acute, subacute and chronic stage: a construct validity study. Diagnostics (Basel). 2021;11(2):365. doi: 10.3390/diagnostics11020365
  34. Sorrentino G, Sale P, Solaro C, et al. Clinical measurement tools to assess trunk performance after stroke: a systematic review. Eur J Phys Rehabil Med. 2018;54(5):772–784. doi: 10.23736/S1973-9087.18.05178-X
  35. Cinnera AM, Marrano S, De Bartolo D, et al. Convergent validity of the Timed Walking Tests with functional ambulatory category in subacute stroke. Brain Sci. 2023;13(7):1089. doi: 10.3390/brainsci13071089
  36. Collen FM, Wade DT, Robb GF, Bradshaw CM. The Rivermead Mobility Index: a further development of the Rivermead Motor Assessment. Int Disabil Stud. 1991;13(2):50–54. doi: 10.3109/03790799109166684
  37. Hsieh CL, Hsueh IP, Mao HF. Validity and responsiveness of the Rivermead Mobility Index in stroke patients. Scand J Rehabil Med. 2000;32(3):140–142. doi: 10.1080/003655000750045497
  38. Khan F, Abusharha S, Alfuraidy A, et al. Prediction of factors affecting mobility in patients with stroke and finding the mediation effect of balance on mobility: a cross-sectional study. Int J Environ Res Public Health. 2022;19(24):16612. doi: 10.3390/ijerph192416612
  39. Venezia AC, Hyer MM, Glasper ER, et al. Acute forced exercise increases BDNF IV mRNA and reduces exploratory behavior in C57BL/6J mice. Genes Brain Behav. 2020;19(5):e12617. doi: 10.1111/gbb.12617
  40. Sommerfeld DK, Eek EU, Svensson AK, et al. Spasticity after stroke: its occurrence and association with motor impairments and activity limitations. Stroke. 2004;35(1):134–139. doi: 10.1161/01.STR.0000105386.05173.5E
  41. Aygul R, Kotan D, Demirbas F, et al. Plasma oxidants and antioxidants in acute ischaemic stroke. J Int Med Res. 2006;34(4):413–418. doi: 10.1177/147323000603400411
  42. Kim BH, Kim IJ, Cho KI, et al. The influence of diabetes on the relationship between N-terminal pro-B-type natriuretic peptide and body mass index. J Int Med Res. 2010;38(5):1737–1748. doi: 10.1177/147323001003800519
  43. Park SJ, Cho KI, Jung SJ, et al. N-terminal pro-B-type natriuretic peptide in overweight and obese patients with and without diabetes: an analysis based on body mass index and left ventricular geometry. Korean Circ J. 2009;39(12):538–544. doi: 10.4070/kcj.2009.39.12.538
  44. Mehra MR, Uber PA, Park MH, et al. Obesity and suppressed B-type natriuretic peptide levels in heart failure. J Am Coll Cardiol. 2004;43(9):1590–1595. doi: 10.1016/j.jacc.2003.10.066
  45. Koizumi M, Watanabe H, Kaneko Y, et al. Impact of obesity on plasma B-type natriuretic peptide levels in Japanese community-based subjects. Heart Vessels. 2012;27(3):287–294. doi: 10.1007/s00380-011-0143-3
  46. Muhammad Umar A, Sharifudin MA, Raj NB, Ahmad AA. Evaluation of serum brain-derived neurotrophic factor (BDNF) in ambulatory stroke survivors with mild cognitive impairment and normal cognitive functions. Malaysian J Med Health Sci. 2024;20(6):242–249. doi: 10.47836/mjmhs.20.6.32
  47. Stanne TM, Åberg ND, Nilsson S, et al. Low circulating acute brain-derived neurotrophic factor levels are associated with poor long-term functional outcome after ischemic stroke. Stroke. 2016;47(7):1943–1945. doi: 10.1161/STROKEAHA.115.012383
  48. Sui SX, Williams LJ, Holloway-Kew KL, et al. Skeletal muscle health and cognitive function: a narrative review. Int J Mol Sci. 2020;22(1):255. doi: 10.3390/ijms22010255
  49. Aisyah V, Subagyo S, Subadi I. Effect of aerobic exercise on brain-derived neurotrophic factor (BDNF) serum level in stroke subjects with cognitive function impairment. Surab Phys Med Rehabil J. 2020;2(2):42. doi: 10.20473/spmrj.v2i2.17669

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Umar A.M., Sharifudin M.A., Raj N.B., Ahmad A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).