Depression in amyotrophic lateral sclerosis: screening using attention bias assessment

Cover Page

Cite item

Abstract

Introduction. Depression is highly prevalent in amyotrophic lateral sclerosis (ALS) [9]. Its detection can be challenging, particularly in advanced disease when many patients develop bulbar dysfunction and upper limb muscle weakness. This necessitates objective methods for diagnosing affective disorders in ALS.

The study aimed to evaluate the potential utility of eye-tracking technology for detecting depression in ALS patients using an attention bias assessment.

Materials and methods. The study enrolled ALS patients meeting Gold Coast criteria. Depressive symptoms were assessed using the Hospital Anxiety and Depression Scale (HADS). During eye-tracking sessions, patients viewed a screen displaying pairs of faces — one emotional (sad or happy) and one neutral.

Results. Data from 33 participants were analyzed. Comparative analysis of mean gaze fixation duration showed that ALS patients with depressive symptoms had significantly longer fixation times on sad faces compared to non-depressed patients. HADS depression scores correlated with mean fixation duration on sad (r = 0.421; p = 0.018) and neutral (r = 0.36; p = 0.047) faces. To analyze the interaction of sensitivity and specificity of mean fixation time on sad faces for detecting depressive disorders, ROC analysis was performed. An area under the curve was 0.722 (acceptable value).

Conclusion. Eye tracking-based attention bias screening assessment shows potential utility for depression detection in ALS. This method may be particularly valuable in advanced disease when patients become immobilized and lose capacity for verbal communication or questionnaire completion [9].

About the authors

Ekaterina V. Pervushina

Bashkir State Medical University

Email: ekaterina-pervushina@yandex.ru
ORCID iD: 0000-0002-9352-5783

Cand. Sci. (Med.), Assoc. Prof., Department of neurology

Russian Federation, 3 Lenin str., Ufa, 450008

Mansur A. Kutlubaev

Bashkir State Medical University

Author for correspondence.
Email: mansur.kutlubaev@yahoo.com
ORCID iD: 0000-0003-1001-2024

Dr. Sci. (Med.), Assoc. Prof., Head, Department of neurology

Russian Federation, 3 Lenin str., Ufa, 450008

Adelina E. Bikmetova

Bashkir State Medical University

Email: adelina.bikmetova@bk.ru
ORCID iD: 0009-0001-3147-0852

student

Russian Federation, 3 Lenin str., Ufa, 450008

Yulia I. Murzakova

Bashkir State Medical University

Email: murzakova02@mail.ru
ORCID iD: 0009-0005-4341-8321

student

Russian Federation, 3 Lenin str., Ufa, 450008

Vladimir D. Mendelevich

Kazan State Medical Universitу

Email: mendelevich_vl@mail.ru
ORCID iD: 0000-0002-8476-6083

Dr. Sci. (Med.), Prof., Head, Department of psychiatry and medical psychology

Russian Federation, Kazan

References

  1. Pagonabarraga J, Álamo C, Castellanos M, et al. Depression in major neurodegenerative diseases and strokes: a critical review of similarities and differences among neurological disorders. Brain Sci. 2023;13(2):318. doi: 10.3390/brainsci13020318
  2. Baquero M, Martín N. Depressive symptoms in neurodegenerative diseases. World J Clin Cases. 2015;3(8):682–693. doi: 10.12998/wjcc.v3.i8.682
  3. Marx W, Penninx BWJH, Solmi M, et al. Major depressive disorder. Nat Rev Dis Primers. 2023;9(1):44. doi: 10.1038/s41572-023-00454-1
  4. Lu L, Deng Y, Xu R. Current potential therapeutics of amyotrophic lateral sclerosis. Front Neurol. 2024;15:1402962. doi: 10.3389/fneur.2024.1402962
  5. Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918–1929. doi: 10.1111/ene.14393
  6. Jellinger KA. Understanding depression with amyotrophic lateral sclerosis: a short assessment of facts and perceptions. J Neural Transm (Vienna). 2024;131(2):107–115. doi: 10.1007/s00702-023-02714-6
  7. Larsson BJ, Nordin K, Nygren I. Symptoms of anxiety and depression in patients with amyotrophic lateral sclerosis and their relatives during the disease trajectory. J Neurol Sci. 2023;455:122780. doi: 10.1016/j.jns.2023.122780
  8. Suslow T, Hublack A, Kersting A, Bodenschatz CM. Attentional biases to emotional information in clinical depression: a systematic and metaanalytic review of eye tracking findings. J Affect Disord. 2020;274: 632– 642. doi: 10.1016/j.jad.2020.05.140
  9. Turner MR.; UK MND Clinical Studies Group. Diagnosing ALS: the Gold Coast criteria and the role of EMG. Pract Neurol. 2022;22(3):176–178. doi: 10.1136/practneurol-2021-003256
  10. Tottenham N, Tanaka JW, Leon AC, et al. The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res. 2009;168(3):242–249. doi: 10.1016/j.psychres.2008.05.006
  11. Ashaie SA, Cherney LR. Eye tracking as a tool to identify mood in aphasia: a feasibility study. Neurorehabil Neural Repair. 2020;34(5):463–471. doi: 10.1177/1545968320916160
  12. Морозова М.А., Потанин С.С., Бениашвили А.Г. и др. Валидация русскоязычной версии Госпитальной шкалы тревоги и депрессии в общей популяции. Профилактическая медицина. 2023;26(4):7–14. Morozova MA, Potanin SS, Beniashvili AG, et al. Validation of the Hospital Anxiety and Depression Scale Russian-language version in the general population. Russian Journal of Preventive Medicine. 2023;26(4):7–14. doi: 10.17116/profmed2023260417
  13. Cedarbaum JM, Stambler N, Malta E, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci. 1999;169(1-2):13–21. doi: 10.1016/s0022-510x(99)00210-5
  14. Balendra R, Al Khleifat A, Fang T, Al-Chalabi A. A standard operating procedure for King’s ALS clinical staging. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20(3-4):159–164. doi: 10.1080/21678421.2018.1556696
  15. Kutlubaev MA, Areprintseva DK, Radakovic R, Pervushina EV. Psychometric properties of the Russian version of the Edinburgh cognitive and behavioral amyotrophic lateral sclerosis screen. Amyotroph Lateral Scler Frontotemporal Degener. 2024;25(7-8):785–787. doi: 10.1080/21678421.2024.2328579
  16. Smets EM, Garssen B, Bonke B, De Haes JC. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995;39(3):315–325. doi: 10.1016/0022-3999(94)00125-o
  17. Кузнецова Д.Р., Кутлубаев М.А., Первушина Е.В. Глазодвигательные нарушения при боковом амиотрофическом склерозе. Журнал неврологии и психиатрии им. С.С. Корсакова. 2025;125(4):7–12. Kuznetsova DR, Kutlubaev MA, Pervushina EV. Oculomotor disorders in patients with amyotrophic lateral sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(4):7–12. doi: 10.17116/jnevro20251250417
  18. Beswick E, Fawcett T, Hassan Z, et al. A systematic review of digital technology to evaluate motor function and disease progression in motor neuron disease. J Neurol. 2022;269(12):6254–6268. doi: 10.1007/s00415-022-11312-7
  19. Fernandes F, Barbalho I, Bispo Júnior A, et al. Digital alternative communication for individuals with amyotrophic lateral sclerosis: what we have. J Clin Med. 2023;12(16):5235. doi: 10.3390/jcm12165235

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Heatmaps. A — patient V. with ALS and clinically significant depression exhibited longer visual fixation on sad faces compared to neutral ones; B — patient N. with ALS without depression showed longer fixation on neutral faces than sad ones.

Download (129KB)
3. Fig. 2. ROC curve demonstrating the sensitivity and specificity of mean fixation duration on sad faces for detecting depressive symptoms in ALS patients.

Download (88KB)

Copyright (c) 2025 Pervushina E.V., Kutlubaev M.A., Bikmetova A.E., Murzakova Y.I., Mendelevich V.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).