Young-Onset Amyotrophic Lateral Sclerosis: Genetic Structure and Phenotypic Features
- Authors: Shevchuk D.V.1, Abramycheva N.Y.1, Protsenko A.R.1, Grishinа D.A.1, Makarova A.G.1, Zakharova M.N.1
-
Affiliations:
- Russian Center of Neurology and Neurosciences
- Issue: Vol 19, No 2 (2025)
- Pages: 25-33
- Section: Original articles
- URL: https://ogarev-online.ru/2075-5473/article/view/310260
- DOI: https://doi.org/10.17816/ACEN.1317
- EDN: https://elibrary.ru/FPUSFS
- ID: 310260
Cite item
Abstract
Introduction. Young-onset amyotrophic lateral sclerosis (yALS) is a rare neurodegenerative disease characterized by the onset of clinical manifestations before the age of 45. The global prevalence, incidence, and genetic structure of yALS remain largely unknown, and the diagnosis is based primarily on clinical presentation, neurophysiologic findings, and molecular genetic analysis.
Aim. The aim of this study was to analyze cases of yALS in the Russian Center of Neurology and Neurosciences.
Materials and methods. A total of 365 ALS cases were analyzed, of which 47 (12.8%) patients met the criteria for yALS based on the age of onset and were included in this study. All patients underwent the necessary diagnostic procedures to exclude or establish a diagnosis. The coding sequence of the SOD1 gene was analyzed, and the size of the tandem hexanucleotide repeats (GGGGCC)n in the C9orf72 gene was evaluated. In some cases, massive parallel sequencing was performed.
Results. Mutations in causative ALS genes were detected in 15 (32%) patients: in 15% of cases, variants were found in the coding sequence of the SOD1 gene and 3’ untranslated region, and in 8.7%, hexanucleotide repeat expansions (GGGGCC)n were found in the C9orf72 gene. In addition, in four (8.5%) yALS cases, mutations in the FUS, UBQLN2, and FIG4 genes were identified using massive parallel sequencing.
Conclusion. Early identification of both sporadic and familial forms of yALS and determination of their molecular genetic patterns is critical for timely genetic counseling and identification of potentially treatable etiologies.
Full Text
##article.viewOnOriginalSite##About the authors
Denis V. Shevchuk
Russian Center of Neurology and Neurosciences
Author for correspondence.
Email: shevchuk.d.v@neurology.ru
ORCID iD: 0009-0002-1334-9730
neurologist, 6th Neurology department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Natalya Yu. Abramycheva
Russian Center of Neurology and Neurosciences
Email: shevchuk.d.v@neurology.ru
ORCID iD: 0000-0001-9419-1159
Dr. Sci. (Biol.), senior researcher, Head, Molecular genetics laboratory, 5th Neurology department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Arina R. Protsenko
Russian Center of Neurology and Neurosciences
Email: shevchuk.d.v@neurology.ru
ORCID iD: 0009-0000-5290-5045
junior researcher, Molecular genetics laboratory, 5th Neurology department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Darya A. Grishinа
Russian Center of Neurology and Neurosciences
Email: shevchuk.d.v@neurology.ru
ORCID iD: 0000-0002-7924-3405
Dr. Sci. (Med.), Head, Center for Peripheral Nervous System Disorders, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Angelina G. Makarova
Russian Center of Neurology and Neurosciences
Email: shevchuk.d.v@neurology.ru
ORCID iD: 0000-0001-8862-654X
Cand. Sci. (Med.), neurologist, 3rd Neurology department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Maria N. Zakharova
Russian Center of Neurology and Neurosciences
Email: shevchuk.d.v@neurology.ru
ORCID iD: 0000-0002-1072-9968
Dr. Sci. (Med.), Professor, leading researcher, Head, 6th Neurology department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367References
- van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. Lancet. 2017;390(10107):2084–2098. doi: 10.1016/S0140-6736(17)31287-4
- Marin B, Logroscino G, Boumédiene F, et al. Clinical and demographic factors and outcome of amyotrophic lateral sclerosis in relation to population ancestral origin. Eur J Epidemiol. 2016;31(3):229–245. doi: 10.1007/S10654-015-0090-X
- Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 2018;17(1):94–102. doi: 10.1016/S1474-4422(17)30401-5
- Deng J, Wu W, Xie Z, et al. Novel and recurrent mutations in a cohort of Chinese patients with young-onset amyotrophic lateral sclerosis. Front Neurosci. 2019;13:1289. doi: 10.3389/fnins.2019.01289
- Lin J, Chen W, Huang P, et al. The distinct manifestation of young-onset amyotrophic lateral sclerosis in China. Amyotroph Lateral Scler Frontotemporal Degener. 2021;22(1-2):30–37. doi: 10.1080/21678421.2020.1797091
- Oliveira Santos M, Gromicho M, Pinto S, et al. Clinical characteristics in young-adult ALS — results from a Portuguese cohort study. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(7-8):620–623. doi: 10.1080/21678421.2020.1790611
- Turner MR, Barnwell J, Al-Chalabi A, et al. Young-onset amyotrophic lateral sclerosis: historical and other observations. Brain. 2012;135 (Рt 9):2883–2891. doi: 10.1093/BRAIN/AWS144
- Sabatelli M, Madia F, Conte A, et al. Natural history of young-adult amyotrophic lateral sclerosis. Neurology. 2008;71(12):876–881. doi: 10.1212/01.WNL.0000312378.94737.45
- Kliest T, Van Eijk RPA, Al-Chalabi A, et al. Clinical trials in pediatric ALS: a TRICALS feasibility study. Amyotroph Lateral Scler Frontotemporal Degener. 2022;23(7-8):481–488. doi: 10.1080/21678421.2021.2024856
- Kacem I, Sghaier I, Bougatef S, et al. Epidemiological and clinical features of amyotrophic lateral sclerosis in a Tunisian cohort. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(1-2):131–139. doi: 10.1080/21678421.2019.1704012
- Mathis S, Goizet C, Soulages A, et al. Genetics of amyotrophic lateral sclerosis: a review. J Neurol Sci. 2019;399:217–226. doi: 10.1016/J.JNS.2019.02.030
- de Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, et al. Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum. 2017;16(2):525–551. doi: 10.1007/S12311-016-0803-Z
- Connolly O, Le Gall L, McCluskey G, et al. A systematic review of genotype-phenotype correlation across cohorts having causal mutations of different genes in ALS. J Pers Med. 2020;10(3):58. doi: 10.3390/JPM10030058
- Souza PVS, Pinto WBVR, Ricarte A, et al. Clinical and radiological profile of patients with spinal muscular atrophy type 4. Eur J Neurol. 2021;28(2):609–619. doi: 10.1111/ENE.14587
- Ludolph A, Drory V, Hardiman O, et al. A revision of the El Escorial criteria — 2015. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(5-6):291–292. doi: 10.3109/21678421.2015.1049183
- Turner MR, Group UMCS. Diagnosing ALS: the Gold Coast criteria and the role of EMG. Pract Neurol. 2022;22(3):176–178. doi: 10.1136/PRACTNEUROL-2021-003256
- Niven E, Newton J, Foley J, et al. Validation of the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen (ECAS): a cognitive tool for motor disorders. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(3-4):172–179. doi: 10.3109/21678421.2015.1030430
- Van Mossevelde S, van der Zee J, Cruts M, et al. Relationship between C9orf72 repeat size and clinical phenotype. Curr Opin Genet Dev. 2017;44:117–124. doi: 10.1016/J.GDE.2017.02.008
- Wiesenfarth M, Gunther K, Muller K, et al. Clinical and genetic features of amyotrophic lateral sclerosis patients with C9orf72 mutations. Brain Commun. 2023;5(2):fcad087. doi: 10.1093/BRAINCOMMS/FCAD087
- Beghi E, Millul A, Micheli A, et al. Incidence of ALS in Lombardy, Italy. Neurology. 2007;68(2):141–145. doi: 10.1212/01.WNL.0000250339.14392.BB
- Chiò A, Calvo A, Moglia C, et al. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry. 2011;82(7):740–746. doi: 10.1136/JNNP.2010.235952
- Berdyński M, Miszta P, Safranow K, et al. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci Rep. 2022;12(1):103. doi: 10.1038/S41598-021-03891-8
- Umoh ME, Fournier C, Li Y, et al. Comparative analysis of C9orf72 and sporadic disease in an ALS clinic population. Neurology. 2016;87(10):1024–1030. doi: 10.1212/WNL.0000000000003067
- Chow CY, Landers JE, Bergren SK, et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet. 2009;84(1):85–88. doi: 10.1016/J.AJHG.2008.12.010
- Chow CY, Zhang Y, Dowling JJ, et al. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature. 2007;448(7149):68–72. doi: 10.1038/NATURE05876
- Tsai CP, Soong BW, Lin KP, et al. FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS. Neurobiol Aging. 2011;32(3):553.e13-21. doi: 10.1016/J.NEUROBIOLAGING.2010.04.009
- Verdiani S, Origone P, Geroldi A, et al. The FIG4 gene does not play a major role in causing ALS in Italian patients. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(3):228–229. doi: 10.3109/21678421.2012.760605
- Yilihamu M, Liu X, Liu X, et al. Case report: a variant of the FIG4 gene with rapidly progressive amyotrophic lateral sclerosis. Front Neurol. 2022;13:984866. doi: 10.3389/FNEUR.2022.984866
- Lehky T, Grunseich C. Juvenile amyotrophic lateral sclerosis: a review. Genes (Basel). 2021;12(12):1935. doi: 10.3390/GENES12121935
- Conte A, Lattante S, Zollino M, et al. P525L FUS mutation is consistently associated with a severe form of juvenile amyotrophic lateral sclerosis. Neuromuscul Disord. 2012;22(1):73–75. doi: 10.1016/J.NMD.2011.08.003
- Johnson JO, Chia R, Miller DE, et al. Association of variants in the SPTLC1 gene with juvenile amyotrophic lateral sclerosis. JAMA Neurol. 2021;78(10):1236–1248. doi: 10.1001/JAMANEUROL.2021.2598
- Deng HX, Chen W, Hong ST, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477(7363):211–215. doi: 10.1038/NATURE10353
- Liu Y, He X, Yuan Y, et al. Association of TRMT2B gene variants with juvenile amyotrophic lateral sclerosis. Front Med. 2024;18(1):68–80. doi: 10.1007/S11684-023-1005-Y
- Chen L. FUS mutation is probably the most common pathogenic gene for JALS, especially sporadic JALS. Rev Neurol (Paris). 2021;177(4):333–340. doi: 10.1016/J.NEUROL.2020.06.010
- Keckarević D, Stević Z, Keckarević-Marković M, et al. A novel P66S mutation in exon 3 of the SOD1 gene with early onset and rapid progression. Amyotroph Lateral Scler. 2012;13(2):237–240. doi: 10.3109/17482968.2011.627588
- Kawamata J, Shimohama S, Takano S, et al. Novel G16S (GGC-AGC) mutation in the SOD-1 gene in a patient with apparently sporadic young-onset amyotrophic lateral sclerosis. Hum Mutat. 1997;9(4):356–358. doi: 10.1002/(SICI)1098-1004(1997)9:4<356::AID-HUMU9>3.0.CO;2-3
- Alexander MD, Traynor BJ, Miller N, et al. “True” sporadic ALS associated with a novel SOD-1 mutation. Ann Neurol. 2002;52(5):680–683. doi: 10.1002/ANA.10369
- Al-Chalabi A, Andersen PM, Chioza B, et al. Recessive amyotrophic lateral sclerosis families with the D90A SOD1 mutation share a common founder: evidence for a linked protective factor. Hum Mol Genet. 1998;7(13):2045–2050. doi: 10.1093/HMG/7.13.2045
- Zinman L, Liu HN, Sato C, et al. A mechanism for low penetrance in an ALS family with a novel SOD1 deletion. Neurology. 2009;72(13):1153–1159. doi: 10.1212/01.WNL.0000345363.65799.35
- Абрамычева Н.Ю., Лысогорская Е.В., Шпилюкова Ю.С. и др. Молекулярная структура бокового амиотрофического склероза в российской популяции. Нервно-мышечные болезни. 2016;6(4):21–27. Abramycheva NYu, Lysogorskaya EV, Shpilyukova YuS, et al. Molecular structure of amyotrophic lateral sclerosis in Russian population. Neuromuscular Diseases. 2016;6(4):21–27. doi: 10.17650/2222-8721-2016-6-4-21-27
- Renaud L, Picher-Martel V, Codron P, et al. Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol Commun. 2019;7(1):103. doi: 10.1186/S40478-019-0758-7/TABLES/2
- Picher-Martel V, Brunet F, Dupré N, et al. The Occurrence of FUS mutations in pediatric amyotrophic lateral sclerosis: a case report and review of the literature. J Child Neurol. 2020;35(8):556–562. doi: 10.1177/0883073820915099
- Naumann M, Peikert K, Günther R, et al. Phenotypes and malignancy risk of different FUS mutations in genetic amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2019;6(12):2384–2394. doi: 10.1002/ACN3.50930
- Dodd KC, Power R, Ealing J, et al. FUS-ALS presenting with myoclonic jerks in a 17-year-old man. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20(3-4):278–280. doi: 10.1080/21678421.2019.1582665
- Leblond CS, Webber A, Gan-Or Z, et al. De novo FUS P525L mutation in Juvenile amyotrophic lateral sclerosis with dysphonia and diplopia. Neurol Genet. 2016;2(2):e63. doi: 10.1212/NXG.0000000000000063
- Nakaya T, Maragkakis M. Amyotrophic lateral sclerosis associated FUS mutation shortens mitochondria and induces neurotoxicity. Sci Rep. 2018;8(1):15575. doi: 10.1038/s41598-018-33964-0
- Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377(2):162–172. doi: 10.1056/NEJMRA1603471
- Chiò A, Logroscino G, Hardiman O, et al. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler. 2009;10(5-6):310–323. doi: 10.3109/17482960802566824
- Westeneng HJ, Debray TPA, Visser AE, et al. Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol. 2018;17(5):423–433. doi: 10.1016/S1474-4422(18)30089-9
- Zou ZY, Liu MS, Li XG, et al. Mutations in SOD1 and FUS caused juvenile-onset sporadic amyotrophic lateral sclerosis with aggressive progression. Ann Transl Med. 2015;3(15):221. doi: 10.3978/J.ISSN.2305-5839.2015.09.04
Supplementary files
