Pharmacological functional MRI technology: potential for use in neurology
- Authors: Raskurazhev A.A.1, Tanashyan M.М.1, Morozova S.N.1, Kuznetsova P.I.1, Annushkin V.A.1, Mazur A.S.1, Panina A.A.1, Spryshkov N.E.1, Piradov M.A.1
-
Affiliations:
- Research Center of Neurology
- Issue: Vol 19, No 1 (2025)
- Pages: 68-76
- Section: Reviews
- URL: https://ogarev-online.ru/2075-5473/article/view/290083
- DOI: https://doi.org/10.17816/ACEN.1267
- ID: 290083
Cite item
Abstract
This review presents recent data on one of the most promising neuroimaging techniques, pharmacological functional magnetic resonance imaging (phFMRI). PhFMRI technologies are described as well as task-based approaches inducing neuronal activation in the areas of interest when evaluating the effects of neuroactive agents. We reviewed the potential use of phFMRI in various neurological disorders such as cerebrovascular disease and epilepsy, as well as in the management of metabolic disorders, cognitive impairment, pain syndrome, etc. Limitations of phFMRI and possible ways to address them in designing and conducting studies are presented. The potential uses of phFMRI for the objective assessment of the targeted effects of pharmacological agents are suggested.
Full Text
##article.viewOnOriginalSite##About the authors
Anton A. Raskurazhev
Research Center of Neurology
Author for correspondence.
Email: raskurazhev@neurology.ru
ORCID iD: 0000-0003-0522-767X
Cand. Sci. (Med.), neurologist, senior researcher, 1st Neurological department, Head, Laboratory of neuropharmacological functional MRI, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Marine М. Tanashyan
Research Center of Neurology
Email: raskurazhev@neurology.ru
ORCID iD: 0000-0002-5883-8119
Dr. Sci. (Med.), Professor, Corr. Member of the Russian Academy of Sciences, Deputy Director for research, Head, 1st Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Sofya N. Morozova
Research Center of Neurology
Email: raskurazhev@neurology.ru
ORCID iD: 0000-0002-9093-344X
Cand. Sci. (Med.), researcher, Radiology department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Polina I. Kuznetsova
Research Center of Neurology
Email: raskurazhev@neurology.ru
ORCID iD: 0000-0002-4626-6520
Cand. Sci. (Med.), neurologist, researcher, 1st Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Vladislav A. Annushkin
Research Center of Neurology
Email: raskurazhev@neurology.ru
ORCID iD: 0000-0002-9120-2550
Cand. Sci. (Med.), neurologist, 1st Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Andrey S. Mazur
Research Center of Neurology
Email: raskurazhev@neurology.ru
ORCID iD: 0000-0001-8960-721X
postgraduate student, 1st Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Anastasya A. Panina
Research Center of Neurology
Email: raskurazhev@neurology.ru
ORCID iD: 0000-0002-8652-2947
postgraduate student, 1st Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Nikita E. Spryshkov
Research Center of Neurology
Email: raskurazhev@neurology.ru
ORCID iD: 0000-0002-2934-5462
postgraduate student, 1st Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Mikhail A. Piradov
Research Center of Neurology
Email: raskurazhev@neurology.ru
ORCID iD: 0000-0002-6338-0392
Dr. Sci. (Med.), Professor, Full member of the Russian Academy of Sciences, Director
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367References
- Dawson GR, Craig KJ, Dourish CT. Validation of experimental medicine methods in psychiatry: the P1vital approach and experience. Biochem Pharmacol. 2011;81(12):1435–1441. doi: 10.1016/j.bcp.2011.03.013
- Conn PJ, Roth BL. Opportunities and challenges of psychiatric drug discovery: roles for scientists in academic, industry, and government settings. Neuropsychopharmacology. 2008;33(9):2048–2060. doi: 10.1038/sj.npp.1301638
- Bandettini PA, Wong EC, Hinks RS, et al. Time course EPI of human brain function during task activation. Magn. Reson. Med. 1992;25(2):390–397. doi: 10.1002/mrm.1910250220
- Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA. 1992;89(13):5951–5955. doi: 10.1073/pnas.89.13.5951
- Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992;89(12):5675–5679. doi: 10.1073/pnas.89.12.5675
- Jenkins BG. Pharmacologic magnetic resonance imaging (phMRI): imaging drug action in the brain. Neuroimage. 2012;62(2):1072–1085. doi: 10.1016/j.neuroimage.2012.03.075
- Chen YC, Galpern WR, Brownell AL, et al. Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med. 1997;38(3):389–398. doi: 10.1002/mrm.1910380306
- Silva AC, Zhang W, Williams DS, Koretsky AP. Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling. Magn Reson Med. 1995;33(2):209–214. doi: 10.1002/mrm.1910330210
- Cuenod CA, Chang MCJ, Arai T, et al. Local brain response to cholinergic receptor stimulation detected by MRI. Proc Int Soc Magn Reson Med. 1993:S3;1387.
- Wandschneider B, Koepp MJ. Pharmaco fMRI: determining the functional anatomy of the effects of medication. Neuroimage Clin. 2016;12:691–697. doi: 10.1016/j.nicl.2016.10.002
- Upadhyay J, Anderson J, Baumgartner R, et al. Modulation of CNS pain circuitry by intravenous and sublingual doses of buprenorphine. Neuroimage. 2012;59(4):3762–3773. doi: 10.1016/j.neuroimage.2011.11.034
- Fanny M, Manuel T, Daniel HW, et al. Pharmacological manipulation of neurotransmitter activity induces disparate effects on cerebral blood flow and resting-state fluctuations. Imaging Neuroscience. 2024;2:1–18. doi: 10.1162/imag _a_00370
- Jenkins BG. Pharmacologic magnetic resonance imaging (phMRI): imaging drug action in the brain. Neuroimage. 2012;62(2):1072–1085. doi: 10.1016/j.neuroimage.2012.03.075
- Carmichael O, Schwarz AJ, Chatham CH, et al. The role of fMRI in drug development. Drug Discov Today. 2018;23(2):333–348. doi: 10.1016/j.drudis.2017.11.012
- Delaveau P, Jabourian M, Lemogne C, et al. Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord. 2011;130(1-2):66–74. doi: 10.1016/j.jad.2010.09.032
- van Wingen GA, Tendolkar I, Urner M, et al. Short-term antidepressant administration reduces default mode and task-positive network connectivity in healthy individuals during rest. Neuroimage. 2014;88:47–53. doi: 10.1016/j.neuroimage.2013.11.022
- Harris RE, Napadow V, Huggins JP, et al. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology. 2013;119(6):1453–1464. doi: 10.1097/ALN.0000000000000017
- Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–541. doi: 10.1002/mrm.1910340409
- Gaebler AJ, Fakour N, Stöhr F, et al. Functional connectivity signatures of NMDAR dysfunction in schizophrenia-integrating findings from imaging genetics and pharmaco-fMRI. Transl. Psychiatry. 2023;13(1):59. doi: 10.1038/s41398-023-02344-2
- Berginström N, Nordström P, Ekman U, et al. Pharmaco-fMRI in patients with traumatic brain injury: a randomized controlled trial with the monoaminergic stabilizer (-)-OSU6162. J Head Trauma Rehabil. 2019;34(3):189–198. doi: 10.1097/HTR.0000000000000440
- Танашян М.М., Лагода О.В., Федин П.А. и др. Современные подходы к лечению больных с хроническими сосудистыми заболеваниями головного мозга. Нервные болезни. 2010;(4):19–22. Tanashyan MM, Lagoda OV, Fedin PA, et al. Modern approaches to the treatment of patients with chronic vascular diseases of the brain. Nervnyye bolezni. 2010;(4):19–22.
- Танашян М.М., Бархатов Д.Ю., Глотова Н.А. и др. Эффективность нейропротекции у больных с хроническими цереброваскулярными заболеваниями. Вестник Российской военно-медицинской академии. 2011;3(35):181–187. Tanashyan MM, Barkhatov DYu, Glotova NA, et al. The effectiveness of neuroprotection in patients with chronic cerebrovascular diseases. Bulletin of the Russian Military Medical Academy, 2011;3(35):181–187.
- Танашян М.М., Коновалов Р.Н., Лагода О.В. Новые подходы к коррекции когнитивных нарушений при цереброваскулярных заболеваниях. Анналы клинической и экспериментальной неврологии. 2018;12(3):30–39. doi: 10.25692/ACEN.2018.3.4 Tanashyan MM, Konovalov RN, Lagoda OV. New approaches to correction of cognitive impairments in cerebrovascular diseases. Annals of clinical and experimental Neurology. 2018;12(3):30–39. doi: 10.25692/ACEN.2018.3.4
- Tanashyan M, Morozova S, Raskurazhev A, Kuznetsova P. A prospective randomized, double-blind placebo-controlled study to evaluate the effectiveness of neuroprotective therapy using functional brain MRI in patients with post-covid chronic fatigue syndrome. Biomed Pharmacother. 2023;168:115723. doi: 10.1016/j.biopha.2023.115723
- Becerra L, Harter K, Gonzalez RG, Borsook D. Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitry in opioid-naive healthy volunteers. Anesth Analg. 2006;103(1):208–216. doi: 10.1213/01.ane.0000221457.71536.e0
- Gear R, Becerra L, Upadhyay J, et al. Pain facilitation brain regions activated by nalbuphine are revealed by pharmacological fMRI. PLoS One. 2013;8(1):e50169. doi: 10.1371/journal.pone.0050169
- Edes AE, McKie S, Szabo E, et al. Increased activation of the pregenual anterior cingulate cortex to citalopram challenge in migraine: an fMRI study. BMC Neurol. 2019;19(1):237. doi: 10.1186/s12883-019-1478-0
- Vollmar C, O’Muircheartaigh J, Symms MR, et al. Altered microstructural connectivity in juvenile myoclonic epilepsy: the missing link. Neurology. 2012;78(20):1555–1559. doi: 10.1212/WNL.0b013e3182563b44
- Wandschneider B, Stretton J, Sidhu M, et al. Levetiracetam reduces abnormal network activations in temporal lobe epilepsy. Neurology. 2014;83(17):1508–1512. doi: 10.1212/WNL.0000000000000910
- De Ciantis A, Muti M, Piccolini C, et al. A functional MRI study of language disturbances in subjects with migraine headache during treatment with topiramate. Neurol Sci. 2008;29(Suppl 1):S141–143. doi: 10.1007/s10072-008-0906-5
- Jansen JF, Aldenkamp AP, Marian Majoie HJ, et al. Functional MRI reveals declined prefrontal cortex activation in patients with epilepsy on topiramate therapy. Epilepsy Behav. 2006;9(1):181–185. doi: 10.1016/j.yebeh.2006.05.004
- Szaflarski JP, Allendorfer JB. Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy. Epilepsy Behav. 2012;24(1):74–80. doi: 10.1016/j.yebeh.2012.02.022
- Tang Y, Xia W, Yu X, et al. Altered cerebral activity associated with topiramate and its withdrawal in patients with epilepsy with language impairment: an fMRI study using the verb generation task. Epilepsy Behav. 2016;59:98–104. doi: 10.1016/j.yebeh.2016.03.013
- Yasuda CL, Centeno M, Vollmar C, et al. The effect of topiramate on cognitive fMRI. Epilepsy Res. 2013;105(1-2):250-255. doi: 10.1016/j.eplepsyres.2012.12.007
- Танашян М.М., Антонова К.В. Цереброметаболическое здоровье. В кн.: Управление метаболическим здоровьем. М.; 2025;II:117–148. Tanashyan MM, Antonova KV. Cerebrometabolic health. In: Management of metabolic health. Moscow; 2025;II:119–148. (In Russ.)
- Кремнева Е.И., Суслин А.С., Говорин A.Н. и др. фМРТ-картирование алиментарных функциональных зон головного мозга. Анналы клинической и экспериментальной неврологии. 2015;9(1):32–36. doi: 10.17816/psaic156 Kremneva EI, Suslin AS, Govorin AN, et al. Mapping of the brain regions responsible for eating behavior regulation with functional MRI. Annals of clinical and experimental neurology. 2015;9(1):32–36. doi: 10.17816/psaic156
- Кузнецова П.И., Романцова Т.И., Логвинова О.В. и др. Функциональная МР-томография головного мозга на фоне медикаментозной коррекции ожирения. Ожирение и метаболизм. 2022;19(1):74–82. doi: 10.14341/omet12810 Kuznetsova PI, Romantsova TI, Logvinova OV, et al. Functional brain MRI in the setting of drug correction of obesity. Obesity and metabolism. 2022;19(1):74–82. doi: 10.14341/omet12810
- Farr OM, Tsoukas MA, Triantafyllou G, et al. Short-term administration of the GLP-1 analog liraglutide decreases circulating leptin and increases GIP levels and these changes are associated with alterations in CNS responses to food cues: a randomized, placebo-controlled, crossover study. Metabolism. 2016;65(7):945–953. doi: 10.1016/j.metabol.2016.03.009
- Cheng H, Zhang Z, Zhang B, et al. enhancement of impaired olfactory neural activation and cognitive capacity by liraglutide, but not dapagliflozin or acarbose, in patients with type 2 diabetes: a 16-week randomized parallel comparative study. Diabetes Care. 2022;45(5):1201–1210. doi: 10.2337/dc21-2064
- Goekoop R, Scheltens P, Barkhof F, et al. Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation — a pharmacological fMRI study. Brain. 2006;129 (Pt 1):141–157. doi: 10.1093/brain/awh671
- Bourke JH, Wall MB. phMRI: methodological considerations for mitigating potential confounding factors. Front Neurosci. 2015;9:167. doi: 10.3389/fnins.2015.00167
- Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med. 2000;44(1):162–167. doi: 10.1002/1522-2594(200007)44:1<162::aid-mrm23>3.0.co;2-e
- Murphy SE, Mackay CE. Using MRI to measure drug action: caveats and new directions. J Psychopharmacol. 2011;25(9):1168–1174. doi: 10.1177/0269881110372547
- Pattinson KT, Rogers R, Mayhew SD, et al. Pharmacological FMRI: measuring opioid effects on the BOLD response to hypercapnia. J Cereb. Blood Flow Metab. 2007;27(2):414–423. doi: 10.1038/sj.jcbfm.9600347
- Deakin JF, Lees J, McKie S, et al. Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry. 2008;65(2):154–164. doi: 10.1001/archgenpsychiatry.2007.37
- Anderson IM, Clark L, Elliott R, et al. 5-HT(2C) receptor activation by m-chlorophenylpiperazine detected in humans with fMRI. Neuroreport. 2002;13(12):1547–1551. doi: 10.1097/00001756-200208270-00012
- Cole DM, Smith SM, Beckmann CF. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci. 2010;4:8. doi: 10.3389/fnsys.2010.00008
Supplementary files
