Potential biochemical markers of epilepsy
- Authors: Maksimova M.Y.1, Abbasova E.M.1, Shitova A.D.1
-
Affiliations:
- Research Center of Neurology
- Issue: Vol 19, No 1 (2025)
- Pages: 62-67
- Section: Reviews
- URL: https://ogarev-online.ru/2075-5473/article/view/290082
- DOI: https://doi.org/10.17816/ACEN.1265
- ID: 290082
Cite item
Abstract
The diagnosis of epilepsy and assessment of the frequency and severity of seizures are essential for the treatment of patients. Epileptogenesis monitoring at different stages can be beneficial in assessing the efficacy of antiepileptic therapy. This approach relies on the concept of biomarkers. A subset of these biomarkers may possess not only diagnostic value but also prognostic value, which is defined as the ability to predict the nature of the epilepsy course and the probability of recurrent seizures.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Marina Yu. Maksimova
Research Center of Neurology
Author for correspondence.
Email: ncnmaximova@mail.ru
ORCID iD: 0000-0002-7682-6672
Dr. Sci (Med.), Prof., Head, 2nd Neurological department, Institute of Clinical and Preventive Neurology, Research Center of Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Ekaterina M. Abbasova
Research Center of Neurology
Email: ncnmaximova@mail.ru
ORCID iD: 0009-0009-7105-3103
postgraduate student, 2nd Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Anna D. Shitova
Research Center of Neurology
Email: ncnmaximova@mail.ru
ORCID iD: 0000-0003-0787-6251
postgraduate student, 2nd Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367References
- Dudek FE, Staley KJ. The time course and circuit mechanisms of acquired epileptogenesis. In: Noebels JL, Avoli M, Rogawski MA, et al., eds. Jasper’s basic mechanisms of the epilepsies. ed. Bethesda; 2012.
- Pitkänen A, Lukasiuk K, Dudek FE, Staley KJ. Epileptogenesis. Cold Spring Harb Perspect Med. 2015;5(10):a022822. doi: 10.1101/cshperspect.a022822
- Ben-Ari Y. Epilepsies and neuronal plasticity: for better or for worse? Dialogues Clin Neurosci. 2008;10(1):17–27. doi: 10.31887/DCNS.2008.10.1/ybenari
- Park KI. Understanding epileptogenesis from molecules to network alteration. Encephalitis. 2024;4(3):47–54. doi: 10.47936/encephalitis.2024.00038
- Pitkänen A, Engel J Jr. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics. 2014;11(2):231–241. doi: 10.1007/s13311-014-0257-2
- Devinsky O, Vezzani A, Najjar S, et al. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36(3):174–184. doi: 10.1016/j.tins.2012.11.008
- Kinboshi M, Ikeda A, Ohno Y. Role of astrocytic inwardly rectifying potassium (Kir) 4.1 channels in epileptogenesis. Front Neurol. 2020;11:626658. doi: 10.3389/fneur.2020.626658
- Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation. 2018;15(1):144. doi: 10.1186/s12974-018-1192-7
- Gautam V, Rawat K, Sandhu A, et al. An insight into crosstalk among multiple signaling pathways contributing to epileptogenesis. Eur J Pharmacol. 2021;910:174469. doi: 10.1016/j.ejphar.2021.174469
- Bonosi L, Benigno UE, Musso S, et al. The role of aquaporins in epileptogenesis — a systematic review. Int J Mol Sci. 2023;24(15):11923. doi: 10.3390/ijms241511923
- Gautam V, Rawat K, Sandhu A, et al. An insight into crosstalk among multiple signaling pathways contributing to epileptogenesis. Eur J Pharmacol. 2021;910:174469. doi: 10.1016/j.ejphar.2021.174469
- Walker LE, Sills GJ, Jorgensen A, et al. High-mobility group box 1 as a predictive biomarker for drug-resistant epilepsy: a proof-of-concept study. Epilepsia. 2022;63(1):e1–e6. doi: 10.1111/epi.17116
- Shen Y, Gong Y, Ruan Y, et al. Secondary epileptogenesis: common to see, but possible to treat? Front Neurol. 2021;12:747372. doi: 10.3389/fneur.2021.747372
- Lee R, Feinbaum R, Ambros V. A short history of a short RNA. Cell. 2004;116(2 Suppl):S89–S92, 1 p following S96. doi: 10.1016/s0092-8674(04)00035-2
- Henshall DC, Hamer HM, Pasterkamp RJ, et al. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol. 2016;15(13):1368–1376. doi: 10.1016/S1474-4422(16)30246-0
- Shaked I, Meerson A, Wolf Y, et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity. 2009;31(6):965–973. doi: 10.1016/j.immuni.2009.09.019
- Cheng X, Ku CH, Siow RC. Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic Biol Med. 2013;64:4–11. doi: 10.1016/j.freeradbiomed.2013.07.025
- Wang J, Yu JT, Tan L, et al. Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Sci Rep. 2015;5:9522. doi: 10.1038/srep09522
- Wang X, Sun Y, Tan Z, et al. Serum MicroRNA-4521 is a potential biomarker for focal cortical dysplasia with refractory epilepsy. Neurochem Res. 2016;41(4):905–912. doi: 10.1007/s11064-015-1773-0
- Salman MM, Sheilabi MA, Bhattacharyya D, et al. Transcriptome analysis suggests a role for the differential expression of cerebral aquaporins and the MAPK signalling pathway in human temporal lobe epilepsy. Eur J Neurosci. 2017;46(5):2121–2132. doi: 10.1111/ejn.13652
- Manley GT, Binder DK, Papadopoulos MC, Verkman AS. New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience. 2004;129(4):983–991. doi: 10.1016/j.neuroscience.2004.06.088
- Kobylarek D, Iwanowski P, Lewandowska Z, et al. Advances in the potential biomarkers of epilepsy. Front Neurol. 2019;10:685. doi: 10.3389/fneur.2019.00685
- Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121–130. doi: 10.1016/j.ceb.2015.02.004
- Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38(6):364–374. doi: 10.1016/j.tins.2015.04.003
- Wang Q, Lin Z, Yao C, et al. Meta-analysis of MMP-9 levels in the serum of patients with epilepsy. Front Neurosci. 2024;18:1296876. doi: 10.3389/fnins.2024.1296876
- Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Serum proteins associated with blood-brain barrier as potential biomarkers for seizure prediction. Int J Mol Sci. 2022;23(23):14712. doi: 10.3390/ijms232314712
- Meguid NA, Samir H, Bjørklund G, et al. Altered S100 calcium-binding protein B and Matrix Metallopeptidase 9 as biomarkers of mesial temporal lobe epilepsy with hippocampus sclerosis. J Mol Neurosci. 2018;66(4):482–491. doi: 10.1007/s12031-018-1164-5
- Ichiyama T, Nishikawa M, Yoshitomi T, et al. Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures. Comparison with acute encephalitis/encephalopathy. Neurology. 1998;50(2):407–411. doi: 10.1212/wnl.50.2.407
- Iughetti L, Lucaccioni L, Fugetto F, et al. Brain-derived neurotrophic factor and epilepsy: a systematic review. Neuropeptides. 2018;72:23–29. doi: 10.1016/j.npep.2018.09.005
- Shpak AA, Rider FK, Druzhkova TA, et al. Reduced levels of lacrimal glial cell line-derived neurotrophic factor (GDNF) in patients with focal epilepsy and focal epilepsy with comorbid depression: a biomarker candidate. Int J Mol Sci. 2023;24(23):16818. doi: 10.3390/ijms242316818
- Zhao B, Shen LX, Ou YN, et al. Risk of seizures and subclinical epileptiform activity in patients with dementia: a systematic review and meta-analysis. Ageing Res Rev. 2021;72:101478. doi: 10.1016/j.arr.2021.101478
- Ranasinghe KG, Kudo K, Hinkley L, et al. Neuronal synchrony abnormalities associated with subclinical epileptiform activity in early-onset Alzheimer’s disease. Brain. 2022;145(2):744–753. doi: 10.1093/brain/awab442
- Martin SP, Leeman-Markowski BA. Proposed mechanisms of tau: relationships to traumatic brain injury, Alzheimer’s disease, and epilepsy. Front Neurol. 2024;14:1287545. doi: 10.3389/fneur.2023.1287545
- Smith KM, Blessing MM, Parisi JE, et al. Tau deposition in young adults with drug-resistant focal epilepsy. Epilepsia. 2019;60(12):2398–2403. doi: 10.1111/epi.16375
- Shapiro LA, Bialowas-McGoey LA, Whitaker-Azmitia PM. Effects of S100B on serotonergic plasticity and neuroinflammation in the hippocampus in down syndrome and Alzheimer’s disease: studies in an S100B overexpressing mouse model. Cardiovasc Psychiatry Neurol. 2010;2010:153657. doi: 10.1155/2010/153657
- Meguid NA, Samir H, Bjørklund G, et al. Altered S100 calcium-binding protein B and matrix metallopeptidase 9 as biomarkers of mesial temporal lobe epilepsy with hippocampus sclerosis. J Mol Neurosci. 2018;66(4):482–491. doi: 10.1007/s12031-018-1164-5
- Langeh U, Singh S. Targeting S100B Protein as a surrogate biomarker and its role in various neurological disorders. Curr Neuropharmacol. 2021;19(2):265–277. doi: 10.2174/1570159X18666200729100427
- Abraira L, Santamarina E, Cazorla S, et al. Blood biomarkers predictive of epilepsy after an acute stroke event. Epilepsia. 2020;61(10):2244–2253. doi: 10.1111/epi.16648
- Shi LM, Chen RJ, Zhang H, et al. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin concentrations in children after seizures. Childs Nerv Syst. 2017;33(5):805–811. doi: 10.1007/s00381-017-3359-4
- Rabinowicz AL, Correale J, Boutros RB, et al. Neuron-specific enolase is increased after single seizures during inpatient video/EEG monitoring. Epilepsia. 1996;37(2):122–125. doi: 10.1111/j.1528-1157.1996.tb00002.x
- Correale J, Rabinowicz AL, Heck CN, et al. Status epilepticus increases CSF levels of neuron-specific enolase and alters the blood-brain barrier. Neurology. 1998;50(5):1388–1391. doi: 10.1212/wnl.50.5.1388
- Willert C, Spitzer C, Kusserow S, Runge U. Serum neuron-specific enolase, prolactin, and creatine kinase after epileptic and psychogenic non-epileptic seizures. Acta Neurol Scand. 2004;109(5):318–323. doi: 10.1046/j.1600-0404.2003.00232.x
- Chang CC, Lui CC, Lee CC, et al. Clinical significance of serological biomarkers and neuropsychological performances in patients with temporal lobe epilepsy. BMC Neurol. 2012;12:15. doi: 10.1186/1471-2377-12-15
- Yasak IH, Yilmaz M, GÖnen M, et al. Evaluation of ubiquitin C-terminal hydrolase-L1 enzyme levels in patients with epilepsy. Arq Neuropsiquiatr. 2020;78(7):424–429. doi: 10.1590/0004-282x20200040
- Mondello S, Palmio J, Streeter J, et al. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is increased in cerebrospinal fluid and plasma of patients after epileptic seizure. BMC Neurol. 2012;12:85. doi: 10.1186/1471-2377-12-85
- Li Y, Wang Z, Zhang B, et al. Cerebrospinal fluid ubiquitin C-terminal hydrolase as a novel marker of neuronal damage after epileptic seizure. Epilepsy Res. 2013;103(2-3):205–210. doi: 10.1016/j.eplepsyres.2012.08.001
- Tikhonova MA, Shvaikovskaya AA, Zhanaeva SY, et al. Concordance between the in vivo content of neurospecific proteins (BDNF, NSE, VILIP-1, S100B) in the hippocampus and blood in patients with epilepsy. Int J Mol Sci. 2023;25(1):502. doi: 10.3390/ijms25010502
- Tan Z, Jiang J, Tian F, et al. Serum Visinin-like protein 1 is a better biomarker than Neuron-specific enolase for seizure-induced neuronal injury: a prospective and observational study. Front Neurol. 2020;11:567587. doi: 10.3389/fneur.2020.567587
Supplementary files
