Mechanisms of neuromuscular junction dysfunction in amyotrophic lateral sclerosis

Cover Page

Cite item

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the death of upper and lower motor neurons. Numerous studies show that structural and functional impairments of neuromuscular junctions (NMJ) occur as early as the presymptomatic stage of ALS. NMJ involvement is independent and one of the primary events in ALS pathogenesis. Aim: to review the data on characteristics and mechanisms of NMJ dysfunction at pre- and postsynaptic levels in ALS patients and a transgenic animal model of the disease. Furthermore, we report on the dysfunction of perisynaptic Schwann cells and impaired mechanisms of motor neuron and skeletal muscle interaction in ALS, with a focus on reviewed publications on targeting of molecular mechanisms underlying NMJ dysfunction and disruption in ALS. The NMJ may be a potential target for novel therapeutic approaches for ALS.

About the authors

Aydar N. Khabibrakhmanov

Kazan State Medical University

Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0000-0001-5625-8658

junior researcher, Institute of Neurosciences

Russian Federation, 49 Butlerova st., Kazan, 420012

Liaisan A. Akhmadieva

Kazan State Medical University

Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0009-0000-4926-3192

junior researcher

Russian Federation, 49 Butlerova st., Kazan, 420012

Kerim K. Nagiev

Kazan State Medical University

Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0009-0000-1577-9780

lecturer, Department of the normal physiology

Russian Federation, 49 Butlerova st., Kazan, 420012

Marat A. Mukhamedyarov

Kazan State Medical University

Author for correspondence.
Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0000-0002-0397-9002

Dr. Sci. (Med.), Professor, Head, Department of the normal physiology; Director, Institute of Neurosciences

Russian Federation, 49 Butlerova st., Kazan, 420012

References

  1. Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017;3:17071. doi: 10.1038/nrdp.2017.71
  2. Хондкариан О.А., Бунина Т.Л., Завалишин И.А. Боковой амиотрофический склероз. М.; 1978. 264 c. Khondkarian OA, Bunina TL, Zavalishin IA. Amyotrophic lateral sclerosis. Moscow; 1978. 264 p. (In Russ.)
  3. Körner S, Kollewe K, Fahlbusch M, et al. Onset and spreading patterns of upper and lower motor neuron symptoms in amyotrophic lateral sclerosis. Muscle Nerve. 2011;43(5):636–642. doi: 10.1002/mus.21936
  4. Traxinger K, Kelly C, Johnson BA, et al. Prognosis and epidemiology of amyotrophic lateral sclerosis: analysis of a clinic population, 1997–2011. Neurol Clin Pract. 2013;3(4):313–320. doi: 10.1212/CPJ.0b013e3182a1b8ab
  5. Grad LI, Rouleau GA, Ravits J, Cashman NR. Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb Perspect Med. 2017;7(8):a024117. doi: 10.1101/cshperspect.a024117
  6. Мухамедьяров М.А., Хабибрахманов А.Н., Зефиров А.Л. Ранние дисфункции при боковом амиотрофическом склерозе: патогенетические механизмы и роль в инициации заболевания. Биологические мембраны: журнал мембранной и клеточной биологии. 2020;37(4):264–270. Mukhamedyarov MA, Khabibrakhmanov AN, Zefirov AL. Early dysfunctions in amyotrophic lateral sclerosis: pathogenetic mechanisms and a role in disease initiation of the disease. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2020;14(4):261–266. doi: 10.1134/S1990747820030113
  7. Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918–1929. doi: 10.1111/ene.14393
  8. Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377(2):162–172. doi: 10.1056/NEJMra1603471
  9. Мухамедьяров М.А., Петров А.М., Григорьев П.Н. и др. Боковой амиотрофический склероз: современные представления о патогенезе и экспериментальные модели. Журнал высшей нервной деятельности им И.П. Павлова. 2018;68(5):551–566. Mukhamedyarov MA, Petrov AM, Grigoriyev PN et al. Amyotrophic lateral sclerosis: current understanding of the pathogenesis and experimental model. Zh Vyssh Nerv Deiat IP Pavlova. 2018;68(5):551–566. doi: 10.1134/S0044467718050106
  10. Rothstein JD, Tsai G, Kuncl RW, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1990;28(1):18–25. doi: 10.1002/ana.410280106
  11. Verma S, Khurana S, Vats A, et al. Neuromuscular junction dysfunction in amyotrophic lateral sclerosis. Mol Neurobiol. 2022;59(3):1502–1527. doi: 10.1007/s12035-021-02658-6
  12. Eisen A., Nakajima M., Weber M. Corticomotorneuronal hyper-excitability in amyotrophic lateral sclerosis. J Neurol Sci 1998;160(Suppl 1):S64–68. doi: 10.1016/S0022-510X(98)00200-7
  13. Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–955. doi: 10.1016/S0140-6736(10)61156-7
  14. Dadon-Nachum M, Melamed E, Offen D. The “dying-back” phenomenon of motor neurons in ALS. J. Mol. Neurosci. 2011;43(3):470–477. doi: 10.1007/s12031-010-9467-1
  15. Pamphlett R, Kril J, Hng TM. Motor neuron disease: a primary disorder of corticomotoneurons? Muscle Nerve. 1995;18(3):314–318. doi: 10.1002/mus.880180308
  16. Attarian S, Vedel J, Pouget J, Schmied A. Progression of cortical and spinal dysfunctions over time in amyotrophic lateral sclerosis. Muscle Nerve. 2008;37(3):364–375. doi: 10.1002/mus.20942
  17. Mukhamedyarov MA, Khabibrakhmanov AN, Khuzakhmetova VF, et al. Early alterations in structural and functional properties in the neuromuscular junctions of mutant FUS mice. Int J Mol Sci. 2023;24(10):9022. doi: 10.3390/ijms24109022
  18. Verma S, Khurana S, Gourie-Devi M, et al. Multiomics approach reveal novel insights in FUS driven juvenile amyotrophic lateral sclerosis: a family quartet analysis. Ann Neurosci. 2023. doi: 10.1177/09727531231194399
  19. Hennig R, Lømo T. Firing patterns of motor units in normal rats. Nature. 1985;314(6007):164–166. doi: 10.1038/314164a0
  20. Burke RE, Levine DN, Zajac FE, et al. Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science. 1971;174(4010):709–712. doi: 10.1126/science.174.4010.709
  21. Burke RE, Dum RP, Fleshman JW, et al. An HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J Comp Neurol. 1982;209(1):17–28. doi: 10.1002/cne.902090103
  22. Cullheim S, Fleshman JW, Glenn LL, Burke RE. Membrane area and dendritic structure in type‐identified triceps surae alpha motoneurons. J Comp Neurol. 1987;255(1):68–81. doi: 10.1002/cne.902550106
  23. Kernell D, Zwaagstra B. Input conductance, axonal conduction velocity and cell size among hindlimb motoneurones of the cat. Brain Res. 1981;204(2):311–326. doi: 10.1016/0006-8993(81)90591-6
  24. Mendell LM. The size principle: a rule describing the recruitment of motoneurons. J Neurophysiol. 2005;93(6):3024–3026. doi: 10.1152/classicessays.00025.2005
  25. Tremblay E, Martineau É, Robitaille R. Opposite synaptic alterations at the neuromuscular junction in an ALS mouse model: when motor units matter. J Neurosci. 2017;37(37):8901–8918. doi: 10.1523/JNEUROSCI.3090-16.2017
  26. Pun S, Santos AF, Saxena S, et al. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci. 2006;9(3):408–419. doi: 10.1038/nn1653
  27. Bjornskov EK, Norris FH, Mower-Kuby J. Quantitative axon terminal and end-plate morphology in amyotrophic lateral sclerosis. Arch Neurol. 1984;41(5):527–530. doi: 10.1001/archneur.1984.04050170073021
  28. Tsujihata M, Hazama R, Yoshimura T, et al. The motor end‐plate fine structure and ultrastructural localization of acetylcholine receptors in amyotrophic lateral sclerosis. Muscle Nerve. 1984;7(3):243–249. doi: 10.1002/mus.880070310
  29. Palma E, Reyes-Ruiz JM, Lopergolo D, et al. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy. Proc Natl Acad Sci U S A. 2016;113(11):3060–3065. doi: 10.1073/pnas.1600251113
  30. Ding Q, Kesavan K, Lee KM, et al. Impaired signaling for neuromuscular synaptic maintenance is a feature of motor neuron disease. Acta Neuropathol Commun. 2022;10(1):61. doi: 10.1186/s40478-022-01360-5
  31. Dengler R, Konstanzer A, Küther G, et al. Amyotrophic lateral sclerosis: Macro–EMG and twitch forces of single motor units. Muscle Nerve. 1990;13(6):545–550. doi: 10.1002/mus.880130612
  32. Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol. 2017;133(6):863–885. doi: 10.1007/s00401-017-1708-8
  33. Fischer LR, Culver DG, Tennant P, et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. 2004;185(2):232–240. doi: 10.1016/j.expneurol.2003.10.004
  34. Maselli RA, Wollman RL, Leung C, et al. Neuromuscular transmission in amyotrophic lateral sclerosis. Muscle Nerve. 1993;16(11):1193–1203. doi: 10.1002/mus.880161109
  35. Bonifacino T, Zerbo RA, Balbi M, et al. Nearly 30 years of animal models to study amyotrophic lateral sclerosis: a historical overview and future perspectives. Int J Mol Sci. 2021;22(22):12236. doi: 10.3390/ijms222212236
  36. Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62. doi: 10.1038/362059a0
  37. Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 1994;264(5166):1772–1775. doi: 10.1126/science.8209258
  38. Bosco DA, Morfini G, Karabacak NM, et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci. 2010;13(11):1396–1403. doi: 10.1038/nn.2660
  39. Huang C, Zhou H, Tong J, et al. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet. 2011;7(3):e1002011. doi: 10.1371/journal.pgen.1002011
  40. Verbeeck C, Deng Q, DeJesus-Hernandez M, et al. Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis. Mol Neurodegener. 2012;7:53. doi: 10.1186/1750-1326-7-53
  41. Mitchell JC, McGoldrick P, Vance C, et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol. 2013;125(2):273–288. doi: 10.1007/s00401-012-1043-z
  42. Shelkovnikova TA, Peters OM, Deykin AV, et al. Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J Biol Chem. 2013;288(35):25266–25274. doi: 10.1074/jbc.M113.492017
  43. Yun Y, Ha Y. CRISPR/Cas9-mediated gene correction to understand ALS. Int J Mol Sci. 2020;21(11):3801. doi: 10.3390/ijms21113801
  44. Tsao W, Jeong YH, Lin S, et al. Rodent models of TDP-43: recent advances. Brain Res. 2012;1462:26–39. doi: 10.1016/j.brainres.2012.04.031
  45. Riemslagh FW, van der Toorn EC, Verhagen RFM, et al. Inducible expression of human C9ORF72 36× G4C2 hexanucleotide repeats is sufficient to cause RAN translation and rapid muscular atrophy in mice. Dis Model Mech. 2021;14(2):dmm044842. doi: 10.1242/dmm.044842
  46. Gould TW, Buss RR, Vinsant S, et al. Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci. 2006;26(34):8774–8786. doi: 10.1523/JNEUROSCI.2315-06.2006
  47. Vinsant S, Mansfield C, Jimenez‐Moreno R, et al. Characterization of early pathogenesis in the SOD1G93A mouse model of ALS: part I, background and methods. Brain Behav. 2013;3(4):335–350. doi: 10.1002/brb3.143
  48. Hegedus J, Putman CT, Tyreman N, Gordon T. Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol. 2008;586(14):3337–3351. doi: 10.1113/jphysiol.2007.149286
  49. Khabibrakhmanov AN, Nurullin LF, Bogdanov EI, et al. Analysis of immunoexpression of synaptic proteins in neuromuscular junctions of symptomatic and presymptomatic mSOD1 transgenic mice with model of amyotrophic lateral sclerosis. BioNanoScience. 2020;10:375–380. doi: 10.1007/s12668-019-00711-2
  50. Giniatullin A, Petrov A, Giniatullin R. Action of hydrogen peroxide on synaptic transmission at the mouse neuromuscular junction. Neuroscience. 2019;399:135–145. doi: 10.1016/j.neuroscience.2018.12.027
  51. Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett. 2019;710:132933. doi: 10.1016/j.neulet.2017.06.052
  52. Mukhamedyarov MA, Grigoryev PN, Khisamieva GA, et al. Dysfunction of neuromuscular synaptic transmission and synaptic vesicle recycling in motor nerve terminals of mSOD1 transgenic mice with model of amyotrophic lateral sclerosis. BioNanoScience. 2019;9:66–73. doi: 10.1007/s12668-018-0590-8
  53. So E, Mitchell JC, Memmi C, et al. Mitochondrial abnormalities and disruption of the neuromuscular junction precede the clinical phenotype and motor neuron loss in hFUSWT transgenic mice. Hum Mol Genet. 2018;27(3):463–474. doi: 10.1093/hmg/ddx415
  54. Picchiarelli G, Demestre M, Zuko A, et al. FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nat Neurosci. 2019;22(11):1793–1805. doi: 10.1038/s41593-019-0498-9
  55. Sharma A, Lyashchenko AK, Lu L, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 2016;7:10465. doi: 10.1038/ncomms10465
  56. Sahadevan S, Hembach KM, Tantardini E, et al. Synaptic FUS accumulation triggers early misregulation of synaptic RNAs in a mouse model of ALS. Nat Commun. 2021;12(1):3027. doi: 10.1038/s41467-021-23188-8
  57. Salam S, Tacconelli S, Smith BN et al. Identification of a novel interaction of FUS and syntaphilin may explain synaptic and mitochondrial abnormalities caused by ALS mutations. Sci Rep. 2021;11(1):13613. doi: 10.1038/s41598-021-93189-6
  58. Chand KK, Lee KM, Lee JD, et al. Defects in synaptic transmission at the neuromuscular junction precede motor deficits in a TDP‐43 Q331K transgenic mouse model of amyotrophic lateral sclerosis. FASEB J. 2018;32(5):2676–2689. doi: 10.1096/fj.201700835R
  59. Clark JA, Southam KA, Blizzard CA, et al. Axonal degeneration, distal collateral branching and neuromuscular junction architecture alterations occur prior to symptom onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Chem Neuroanat. 2016;76(Pt A):35–47. doi: 10.1016/j.jchemneu.2016.03.003
  60. Turner BJ, Lopes EC, Cheema SS. Neuromuscular accumulation of mutant superoxide dismutase 1 aggregates in a transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci Lett. 2003;350(2):132–136. doi: 10.1016/S0304-3940(03)00893-0
  61. Dewil M, dela Cruz VF, Van Den Bosch L, Robberecht W. Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1G93A-induced motor neuron death. Neurobiol Dis. 2007;26(2):332–341. doi: 10.1016/j.nbd.2006.12.023
  62. Wong M, Martin LJ. Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Hum Mol Genet. 2010;19(11):2284–2302. doi: 10.1093/hmg/ddq106
  63. Anakor E, Milla V, Connolly O, et al. The neurotoxicity of vesicles secreted by ALS patient myotubes is specific to exosome-like and not larger subtypes. Cells. 2022;11(5):845. doi: 10.3390/cells11050845
  64. Le Gall L, Duddy WJ, Martinat C, et al. Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles. J Cachexia Sarcopenia Muscle. 2022;13(2):1385–1402. doi: 10.1002/jcsm.12945
  65. Jokic N, Gonzalez de Aguilar J, Dimou L, et al. The neurite outgrowth inhibitor Nogo‐A promotes denervation in an amyotrophic lateral sclerosis model. EMBO Rep. 2006;7(11):1162–1167. doi: 10.1038/sj.embor.7400826
  66. Bruneteau G, Bauché S, Gonzalez de Aguilar JL, et al. Endplate denervation correlates with Nogo-A muscle expression in amyotrophic lateral sclerosis patients. Ann Clin Transl Neurol. 2015;2(4):362–272. doi: 10.1002/acn3.179
  67. Bros-Facer V, Krull D, Taylor A, et al. Treatment with an antibody directed against Nogo-A delays disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet. 2014;23(16):4187–4200. doi: 10.1093/hmg/ddu136
  68. Dupuis L, Loeffler JP. Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models. Curr Opin Pharmacol. 2009;9(3):341–346. doi: 10.1016/j.coph.2009.03.007
  69. Dupuis L, Oudart H, René F, et al. Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci U S A. 2004;101(30):11159–11164. doi: 10.1073/pnas.0402026101
  70. Martineau É, Arbour D, Vallée J, Robitaille R. Properties of glial cell at the neuromuscular junction are incompatible with synaptic repair in the SOD1 G37R ALS mouse model. J Neurosci. 2020;40(40):7759–7777. doi: 10.1523/JNEUROSCI.1748-18.2020
  71. Harrison JM, Rafuse VF. Muscle fiber-type specific terminal Schwann cell pathology leads to sprouting deficits following partial denervation in SOD1G93A mice. Neurobiol Dis. 2020;145:105052. doi: 10.1016/j.nbd.2020.105052
  72. Alhindi A, Shand M, Smith HL, et al. Neuromuscular junction denervation and terminal Schwann cell loss in the hTDP‐43 overexpression mouse model of amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol. 2023;49(4):e12925. doi: 10.1111/nan.12925
  73. Winter F De, Vo T, Stam FJ, et al. The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci. 2006;32(1-2):102–117. doi: 10.1016/j.mcn.2006.03.002
  74. Maimon R, Ionescu A, Bonnie A, et al. miR126-5p downregulation facilitates axon degeneration and NMJ disruption via a non-cell-autonomous mechanism in ALS. J Neurosci. 2018;38(24):5478–5494. doi: 10.1523/JNEUROSCI.3037-17.2018
  75. Mora JS, Genge A, Chio A, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(1-2):5–14. doi: 10.1080/21678421.2019.1632346
  76. Saini J, Faroni A, Reid AJ, et al. Cross‐talk between motor neurons and myotubes via endogenously secreted neural and muscular growth factors. Physiol Rep. 2021;9(8):e14791. doi: 10.14814/phy2.14791
  77. Ma G, Wang Y, Li Y, et al. MiR-206, a key modulator of skeletal muscle development and disease. Int J Biol Sci. 2015;11(3):345–352. doi: 10.7150/ijbs.10921
  78. Dobrowolny G, Martone J, Lepore E, et al. A longitudinal study defined circulating microRNAs as reliable biomarkers for disease prognosis and progression in ALS human patients. Cell Death Discov. 2021;7(1):4. doi: 10.1038/s41420-020-00397-6
  79. Nishimune H, Shigemoto K. Practical anatomy of the neuromuscular junction in health and disease. Neurol. Clin. 2018;36(2):231–240. doi: 10.1016/j.ncl.2018.01.009
  80. Zong Y, Jin R. Structural mechanisms of the agrin–LRP4–MuSK signaling pathway in neuromuscular junction differentiation. Cell Mol Life Sci. 2013;70(17):3077–3088. doi: 10.1007/s00018-012-1209-9
  81. Tu WY, Xu W, Zhang J, et al. C9orf72 poly-GA proteins impair neuromuscular transmission. Zool Res. 2023;44(2):331–340. doi: 10.24272/j.issn.2095-8137.2022.356
  82. Vilmont V, Cadot B, Vezin E, et al. Dynein disruption perturbs post-synaptic components and contributes to impaired MuSK clustering at the NMJ: implication in ALS. Sci Rep. 2016;6:27804. doi: 10.1038/srep27804
  83. White MA, Kim E, Duffy A, et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat Neurosci. 2018;21(4):552–563. doi: 10.1038/s41593-018-0113-5
  84. Cantor S, Zhang W, Delestrée N, et al. Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody. Elife. 2018;7:e34375. doi: 10.7554/eLife.34375
  85. Pérez-García MJ, Burden SJ. Increasing MuSK activity delays denervation and improves motor function in ALS mice. Cell Rep. 2012;2(3):497–502. doi: 10.1016/j.celrep.2012.08.004
  86. Sengupta-Ghosh A, Dominguez SL, Xie L, et al. Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1G93A mouse model of ALS. Neurobiol Dis. 2019;124:340–352. doi: 10.1016/j.nbd.2018.12.002
  87. Miyoshi S, Tezuka T, Arimura S, et al. DOK7 gene therapy enhances motor activity and life span in ALS model mice. EMBO Mol Med. 2017;9(7):880–889. doi: 10.15252/emmm.201607298

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Pathogenic mechanisms of NMJ dysfunction in ALS and an ALS model. The image was created with BioRender.com.

Download (880KB)

Copyright (c) 2025 Khabibrakhmanov A.N., Akhmadieva L.A., Nagiev K.K., Mukhamedyarov M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».