Radiomics in the differential diagnosis of glioblastoma under the primary neurooncoimaging conditions

Cover Page

Cite item

Abstract

Introduction. According to the 2021 WHO Classification of Tumors of the Central Nervous System (CNS) and the 2023 Clinical Practice Guidelines on the Drug Management of Primary CNS Cancers, the first step of molecular genetic testing to identify the morphological type and malignancy of adult-type diffuse gliomas is the detection of isocitrate dehydrogenase (IDH) mutation status. However, tumor tissue biopsy as the conventional diagnostic standard has a number of limitations that can potentially be mitigated by applying the principles of radiomics to the interpretation of magnetic resonance (MR) images.

The aim of our study is to develop a radiomics model for IDH mutation status prediction, which can be applied to primary diagnostic imaging in patients with suspected adult-type diffuse gliomas.

Materials and methods. We conducted a retrospective comparative statistical analysis of radiomic features extracted from 46 conventional brain MR images of the patients with adult-type diffuse gliomas and identified IDH mutation status using the Random Forest algorithm of machine learning in combination with various preprocessing methods of the source imaging data and a semi-automated LevelTracing tool used for segmentation of the regions of interest (ROI).

Results. The most effective combination of tools for preprocessing, segmentation, and classification was found to be ScaleIntensity, LevelTracing, and Random Forest, respectively. Using this combination, we verified the reliability of six radiomic predictors identified at the previous study stage. These features were all associated with IDH mutation status, and most of them capture texture heterogeneity in the ROIs at the voxel level. We were also able to improve the prognostic performance of our classification model up to AUC = 0.845 ± 0.089 (p < 0.05).

Conclusion. Based on a small, technically heterogeneous sample of routine MR imaging data, we developed a multiparametric model of IDH mutation status prediction in the patients with adult-type diffuse gliomas. Our conclusion is that relatively uniform preprocessing techniques based on uniform voxel intensity changes, which allow to preserve the structural detail, are feasible in clinical practice. The identified radiomic, likely voxel-based, features reflect the severity of perifocal vasogenic edema and the measure of intratumor morphological heterogeneity. We plan to assess the reproducibility of the study results using similar medical imaging data from open sources and to develop a color mapping technique for the ROIs to facilitate visual interpretation of quantitative radiomic data.

About the authors

Nikita E. Maslov

Almazov National Medical Research Centre; Saint Petersburg Сlinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological)

Author for correspondence.
Email: atickinwallsome@gmail.com
ORCID iD: 0000-0001-6098-9146

postgraduate student, Department of radiation diagnostics and medical imaging with the clinic, Almazov National Medical Research Centre; radiologist, Department of radiation diagnostics, Saint Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological)

Russian Federation, 2 Akkuratov st., St. Petersburg, 197341; St. Petersburg

Daria A. Valenkova

Saint Petersburg Electrotechnical University "LETI"

Email: atickinwallsome@gmail.com
ORCID iD: 0009-0005-3042-1476

engineer, Information and Methodological Center, Faculty of computer technology and informatics

Russian Federation, St. Petersburg

Alexander M. Sinitсa

Saint Petersburg Electrotechnical University "LETI"

Email: atickinwallsome@gmail.com
ORCID iD: 0000-0001-9869-4909

senior researcher, Department of radio engineering systems

Russian Federation, St. Petersburg

Gennadiy E. Trufanov

Almazov National Medical Research Centre

Email: atickinwallsome@gmail.com
ORCID iD: 0000-0002-1611-5000

Dr. Sci. (Med.), Professor, Head, Department of radiation diagnostics and medical imaging with the clinic; Head, Research Institute of Radiation Diagnostics

Russian Federation, 2 Akkuratov st., St. Petersburg, 197341

Vladimir M. Moiseenko

Saint Petersburg Сlinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological)

Email: atickinwallsome@gmail.com
ORCID iD: 0000-0002-2246-0441

Corr. Member of the Russian Academy of Sciences, Professor, Director

Russian Federation, St. Petersburg

Alexander Yu. Efimtsev

Almazov National Medical Research Centre

Email: atickinwallsome@gmail.com
ORCID iD: 0000-0003-2249-1405

Dr. Sci. (Med.), Assосiate Professor, Department of radiation diagnostics and medical imaging with the clinic; leading researcher, Research Institute of Radiation Diagnostics

Russian Federation, 2 Akkuratov st., St. Petersburg, 197341

Vera V. Chernobrivtseva

Almazov National Medical Research Centre; Saint Petersburg Сlinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological)

Email: atickinwallsome@gmail.com
ORCID iD: 0000-0001-7037-177X

Cand. Sci. (Med.), assistant, Department of radiation diagnostics and medical imaging with the clinic, Almazov National Medical Research Centre; Head, Department of radiation diagnostics, Saint Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological)

Russian Federation, 2 Akkuratov st., St. Petersburg, 197341; St. Petersburg

References

  1. Ostrom QT, Patil N, Cioffi G, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol. 2020;22(12 Suppl 2):iv1–iv96. doi: 10.1093/neuonc/noaa200
  2. Дяченко А.А. Эпидемиология и выживаемость больных первичными опухолями центральной нервной системы: популяционное исследование: дис. … канд. мед. наук. СПб., 2014. Dyachenko AA. Epidemiology and survival of patients with primary tumors of the central nervous system: a population-based study. St. Peterburg, 2014. (In Russ.)
  3. McKinnon C, Nandhabalan M, Murray SA, Plaha P. Glioblastoma: clinical presentation, diagnosis, and management. BMJ. 2021;374:n1560. doi: 10.1136/bmj.n1560
  4. Кобяков Г.Л., Бекяшев А.Х., Голанов А.В. и др. Практические рекомендации по лекарственному лечению первичных опухолей центральной нервной системы. Злокачественные опухоли: Практические рекомендации RUSSCO #3s2. 2018;(8):83–99. DOI: 10.18 027/2224-5057-2018-8-3s2-83-99 Kobyakov GL, Bekyashev AH, Golanov AV, et al. Practical recommendations for drug treatment of primary tumors of the central nervous system. Malignant tumors: Practical recommendations RUSSCO. 2018;(8):83–99. DOI: 10.18 027/2224-5057-2018-8-3s2-83-99
  5. Мацко М.В., Мацко Е.Д. Нейроонкология, 2021. Краткий анализ новой классификации Всемирной организации здравоохранения опухолей центральной нервной системы. Вестник Санкт-Петербургского университета. Медицина. 2022;17(2):88–100. doi: 10.21638/spbu11.2022.202 Matsko MV, Matsko ED. Neuro-oncology, 2021. Brief analysis of the new World Health Organization classification of tumors of the central nervous system. Vestnik of Saint Petersburg University. Medicine. 2022;17(2):88–100. doi: 10.21638/spbu11.2022.202
  6. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–1251. doi: 10.1093/neuonc/noab106
  7. Крылов В.В., Евзиков Г.Ю., Кобяков Г.Л. Морфогенетическая характеристика глиальных опухолей у взрослых в классификациях ВОЗ 2007, 2016, 2021 гг. Изменения классификаций и их значение для клинической практики. Нейрохирургия. 2023;25(3):135–148. doi: 10.17650/1683-3295-2023-25-3-135-148 Krylov VV, Evzikov GYu, Kobyakov GL. Morphogenetic characteristics of glial tumors in adults per the WHO classifications of 2007, 2016, 2021. Changes in the classifications and their significance for clinical practice. Russian journal of neurosurgery. 2023;25(3):135–148. doi: 10.17650/1683-3295-2023-25-3-135-148
  8. Улитин А.Ю., Мацко М.В., Кобяков Г.Л. и др. Практические рекомендации по лекарственному лечению первичных опухолей центральной нервной системы. Практические рекомендации RUSSCO, часть 1. Злокачественные опухоли. 2023;13(#3s2):120–147. doi: 10.18027/2224-5057-2023-13-3s2-1-120-147 Ulitin AYu, Macko MV, Kobyakov GL, et al. Practical recommendations for drug treatment of primary tumors of the central nervous system. Malignant tumors: Practical recommendations RUSSCO. 2023;13(#3s2):120–147. doi: 10.18027/2224-5057-2023-13-3s2-1-120-147
  9. Chung CY, Pigott LE. Predicting IDH and ATRX mutations in gliomas from radiomic features with machine learning: a systematic review and meta-analysis. Front Radiol. 2024;4:1493824. doi: 10.3389/fradi.2024.1493824
  10. Malone H, Yang J, Hershman DL, et al. Complications following stereotactic needle biopsy of intracranial tumors. World Neurosurg. 2015;84(4):1084–1089. doi: 10.1016/j.wneu.2015.05.025
  11. Шашкин Ч.С., Жетписбаев Б.Б., Абдулгужина Р.М., Жуков Е.С. Стереотаксическая биопсия опухолей головного мозга. Нейрохирургия и неврология Казахстана. 2013;4(33):23–25. Shashkin ChS, Zhetpisbaev BB, Abdulguzhina RM, Zhukov ES. Stereotaxic biopsy of brain tumors. Nejrohirurgiya i nevrologiya Kazahstana. 2013;4(33):23–25.
  12. Li Y, Qin Q, Zhang Y, Cao Y. Noninvasive determination of the IDH status of gliomas using MRI and MRI-based radiomics: impact on diagnosis and prognosis. Curr Oncol. 2022;29(10):6893–6907. doi: 10.3390/curroncol29100542
  13. Chang K, Bai HX, Zhou H, et al. Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin Cancer Res. 2018;24(5):1073–1081. doi: 10.1158/1078-0432.CCR-17-2236
  14. Choi Y, Nam Y, Lee YS, et al. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation. Eur J Radiol. 2020;128:109031. doi: 10.1016/j.ejrad.2020.109031
  15. Hashido T, Saito S, Ishida T. Radiomics-based machine learning classification for glioma grading using diffusion- and perfusion-weighted magnetic resonance imaging. J Comput Assist Tomogr. 2021;45(4):606–613. doi: 10.1097/RCT.0000000000001180
  16. Lin K, Cidan W, Qi Y, Wang X. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging. Med Phys. 2022;49(7):4419–4429. doi: 10.1002/mp.15648
  17. Shen N, Lv W, Li S, et al. Noninvasive evaluation of the notch signaling pathway via radiomic signatures based on multiparametric MRI in association with biological functions of patients with glioma: a multi-institutional study. J Magn Reson Imaging. 2023;57(3):884–896. doi: 10.1002/jmri.28378
  18. Zhong S, Ren JX, Yu ZP, et al. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics. J Neurosurg. 2022;139(2):305–314. doi: 10.3171/2022.10.JNS22801
  19. Rui W, Zhang S, Shi H, et al. Deep learning-assisted quantitative susceptibility mapping as a tool for grading and molecular subtyping of gliomas. Phenomics. 2023;3(3):243–254. doi: 10.1007/s43657-022-00087-6
  20. Guo W, She D, Xing Z, et al. Multiparametric MRI-based radiomics model for predicting H3 K27M mutant status in diffuse midline glioma: a comparative study across different sequences and machine learning techniques. Front Oncol. 2022;12:796583. doi: 10.3389/fonc.2022.796583
  21. Маслов Н.Е., Труфанов Г.Е., Моисеенко В.М. и др. Разработка принципов адаптации радиогеномного подхода к визуализации глиальных опухолей в рамках инициальных диагностических мероприятий. Вестник медицинского института «РЕАВИЗ». Реабилитация, Врач и Здоровье. 2024;14(1):168–176. doi: 10.20340/vmi-rvz.2024.1.MIM.3 Maslov NE, Trufanov GE, Moiseenko VM, et al. Radiogenomic approach to glial tumors imaging under conditions of initial diagnostic measures: adaptation principles development. Bulletin of the Medical Institute “REAVIZ”. Rehabilitation, Doctor and Health. 2024;14(1):168–176. doi: 10.20340/vmi-rvz.2024.1.MIM.3
  22. Маслов Н.Е., Валенкова Д.А., Труфанов Г.Е., Моисеенко В.М. Анализ методик нормализации данных МРТ и сегментации зон интереса при рутинизации радиогеномного подхода к визуализации глиом. Вестник Смоленской государственной медицинской академии. 2024;(4):149–158. Maslov NE, Valenkova DA, Trufanov GE, Moiseenko VM. Analysis of MRI normalization techniques and ROI segmentation tools during routinization of radiogenomic approach to gliomas imaging. Vestnik Smolenskoj gosudarstvennoj medicinskoj akademii. 2024;(4):149–158. doi: 10.37903/vsgma.2024.4.19
  23. Valenkova D, Lyanova A, Sinitca A, et al. A fuzzy rank-based ensemble of CNN models for MRI segmentation. Biomed Signal Proc Control. 2025;102:107342. doi: 10.1016/j.bspc.2024.107342
  24. Antoine JP. Wavelet transforms and their applications. Physics Today. 2003;56(4):68–8. doi: 10.1063/1.1580056
  25. Li Y, Ammari S, Balleyguier C, et al. Impact of preprocessing and harmonization methods on the removal of scanner effects in brain MRI radiomic features. Cancers. 2021;13(12):3000. doi: 10.3390/cancers13123000
  26. Horng H, Singh A, Yousefi B, et al. Generalized ComBat harmonization methods for radiomic features with multi-modal distributions and multiple batch effects. Scientific Reports. 2022r;12(1):4493. doi: 10.1038/s41598-022-08412-9
  27. Hasanzadeh A, Moghaddam HS, Shakiba M, et al. The role of multimodal imaging in differentiating vasogenic from infiltrative edema: a systematic review. Indian J. Radiol. Imaging. 2023;33(4):514–521. doi: 10.1055/s-0043-1772466
  28. Min Zh, Niu Ch, Rana N, et al. Differentiation of pure vasogenic edema and tumor-infiltrated edema in patients with peritumoral edema by analyzing the relationship of axial and radial diffusivities on 3.0T MRI. Clin. Neurol. Neurosurg. 2013;115(8):1366–1370. doi: 10.1016/j.clineuro.2012.12.031
  29. Li Y, Qian Z, Xu K, et al. Radiomic features predict Ki-67 expression level and survival in lower grade gliomas. J Neurooncol. 2017 ;135(2):317–324. doi: 10.1007/s11060-017-2576-8
  30. Reuss DE, Kratz A, Sahm F, et al. Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol. 2015;130(3):407–417. doi: 10.1007/s00401-015-1454-8
  31. Suzuki H, Aoki K, Chiba K, et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet. 2015;47(5):458–468. doi: 10.1038/ng.3273
  32. Brat DJ, Aldape K, Colman H, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol. 2018;136(5):805–810. doi: 10.1007/s00401-018-1913-0
  33. Hasselblatt M, Jaber M, Reuss D, et al. Diffuse astrocytoma, IDH-wildtype: a dissolving diagnosis. J Neuropathol Exp Neurol. 2018;77(6):422–425. doi: 10.1093/jnen/nly012
  34. McNamara C, Mankad K, Thust S, et al. 2021 WHO classification of tumours of the central nervous system: a review for the neuroradiologist. Neuroradiology. 2022;64(10):1919–1950. doi: 10.1007/s00234-022-03008-6
  35. Smith HL, Wadhwani N, Horbinski C. Major features of the 2021 WHO classification of CNS tumors. Neurotherapeutics. 2022;19(6):1691–1704. doi: 10.1007/s13311-022-01249-0
  36. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–820. doi: 10.1007/s00401-016-1545-1
  37. Di Salle G, Tumminello L, Laino ME, et al. Accuracy of radiomics in predicting IDH mutation status in diffuse gliomas: a bivariate meta-analysis. Radiol Artif Intell. 2024;6(1):e220257. doi: 10.1148/ryai.220257
  38. Verduin M, Primakov S, Compter I, et al. Prognostic and predictive value of integrated qualitative and quantitative magnetic resonance imaging analysis in glioblastoma. Cancers (Basel). 2021;13(4):722. doi: 10.3390/cancers13040722
  39. Zachariah RM, Priya PS, Pendem S. Classification of low- and high-grade gliomas using radiomic analysis of multiple sequences of MRI brain. J Cancer Res Ther. 2023;19(2):435–446. doi: 10.4103/jcrt.jcrt_1581_22
  40. Zhang Z, Xiao J, Wu S, et al. Deep convolutional radiomic features on diffusion tensor images for classification of glioma grades. J Digit Imaging. 2020;33(4):826–837. doi: 10.1007/s10278-020-00322-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Box plot displaying the results of 5-fold cross-validation of image preprocessing with the ScaleIntensity transform. 1 — Sphericity; 2 — Dependence Entropy_HHH; 3 — Dependence Non-uniformity Normalized_HHH; 4 — Dependence Variance_HHHH; 5 —Dependence Variance_HLH; 6 — Small Area Emphasis_LHL; 7 — all features.

Download (75KB)
3. Fig. 2. Quantitative distribution of voxels with specific gray levels throughout all dataset images. А — raw data; В — ScaleIntensity transformed data.

Download (157KB)
4. Fig. 3. Violin plot outlining sphericity values.

Download (166KB)
5. Fig. 4. ROC curve and confusion matrix of predictive model for IDH mutation status (test sample).

Download (125KB)
6. Fig. 5. Diffuse glioma (Т2-FLAIR, ах). A — raw data; B — AdjustContrast transformed (γ = 0.9).

Download (175KB)
7. Fig. 6. Diffuse glioma (Т2-FLAIR, ах). А — raw data; В — ScaleIntensity transformed data.

Download (191KB)

Copyright (c) 2025 Maslov N.E., Valenkova D.A., Sinitсa A.M., Trufanov G.E., Moiseenko V.M., Efimtsev A.Y., Chernobrivtseva V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».