Spectrum of Cognitive Impairment in Patients with Multiple Sclerosis

Cover Page

Cite item

Abstract

Introduction. Cognitive impairment (CI) is a common manifestation of multiple sclerosis (MS), which significantly affects patients’ daily life and professional activity. Despite the development of methods to screen MS patients for CI, data on its prevalence in the Russian population are still lacking.

Aim: to comprehensively assess cognitive functions in patients with different types of MS.

Materials and methods. The study included MS patients who did not have any other possible causes of CI and no diseases or conditions that confounded this assessment. CI was determined using the Brief International Cognitive Assessment in Multiple Sclerosis (BICAMS) test battery and the Stroop test as a decrease in the scores below the mean by at least 1.5 standard deviations. CI was subjectively assessed using the Perceived Deficit Questionnaire; fatigue was subjectively assessed using the Modified Fatigue Impact Scale (MFIS). The Mann–Whitney test and Fisher’s exact test were used for comparison, and the Spearman test was used to evaluate correlations.

Results. We evaluated 77 MS patients (30 men; age 40 [30; 48] years; 47 with relapsing-remitting MS, 30 with progressive MS). CI incidence was 23.4% in patients with relapsing-remitting MS and 77% in patients with progressive MS, while multi-domain CI was statistically significantly more common in patients with progressive MS. Impairment of processing speed was the most common. Patients with relapsing-remitting MS and CI were statistically significantly older and had longer disease duration than those without CI. There was a statistically significant correlation of subjective CI severity with MFIS scores but not with testing results.

Conclusion. CI incidence in MS patients was relatively high with greater severity and involvement of more domains in patients with progressive MS. No correlation was found between subjective and objective CI assessment results, which may suggest that patients underestimated their deficit.

About the authors

Alfiia H. Zabirova

Research Center of Neurology

Author for correspondence.
Email: alfijasabirowa@gmail.com
ORCID iD: 0000-0001-8544-3107

research assistant, Non-invasive neuromodulation group, Institute of Neurorehabilitation and Recovery Technologies

Russian Federation, Moscow

Ilya S. Bakulin

Research Center of Neurology

Email: bakulinilya@gmail.com
ORCID iD: 0000-0003-0716-3737

Cand. Sci. (Med.), senior researcher, Head, Non-invasive neuromodulation group, Institute of Neurorehabilitation and Recovery Technologies

Russian Federation, Moscow

Maria N. Zakharova

Research Center of Neurology

Email: zakharova@neurology.ru
ORCID iD: 0000-0002-1072-9968

Dr. Sci. (Med.), principal researcher, Head, 6th Neurological department, Institute of Clinical and Preventive Neurology

Russian Federation, Moscow

Elena V. Gnedovskaya

Research Center of Neurology

Email: gnedovskaya@mail.ru
ORCID iD: 0000-0001-6026-3388

Dr. Sci. (Med.), leading researcher, Deputy director for research, organizational work, Head, Institute of Medical Education and Professional Development

Russian Federation, Moscow

Natalia A. Suponeva

Research Center of Neurology

Email: nasu2709@mail.ru
ORCID iD: 0000-0003-3956-6362

Dr. Sci. (Med.), Corresponding Member of RAS, Director, Institute of Neurorehabilitation and Recovery Technologies

Russian Federation, Moscow

References

  1. GBD 2016 Multiple Sclerosis Collaborators. Global, regional, and national burden of multiple sclerosis 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(3):269–285. doi: 10.1016/S1474-4422(18)30443-5
  2. Ласков В.Б., Логачева Е.А., Третьякова Е.Е., Гриднев М.А. Клинико-эпидемиологические особенности больных рассеянным склерозом в Курской области. Неврология, нейропсихиатрия, психосоматика. 2017;9(1):55–60. Laskov V.B., Logacheva E.A., Tretyakova E.E., Gridnev M.A. Clinical and epidemiological features of patients with multiple sclerosis in the Kursk Region. Neurology, neuropsychiatry, psychosomatics. 2017;9(1):55–60. doi: 10.14412/2074-2711-2017-1-55-60
  3. Смагина И.В., Ельчанинова Е.Ю., Ельчанинова С.А. Рассеянный склероз в Алтайском крае: результаты проспективного эпидемиологического исследования. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2019;119(2-2): 7–11. Smagina I.V., Elchaninova E.Yu., Elchaninova S.A. Multiple sclerosis in the Altai region of Russia: a prospective epidemiological study. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(2-2):7–11. (In Russ.) doi: 10.17116/jnevro2019119227
  4. Захарова М.Н., Абрамова А.А., Аскарова Л.Ш. и др. Рассеянный склероз: вопросы диагностики и лечения. Практическое руководство для врачей. М.; 2018. Zakharova M.N., Abramova A.A., Askarova L.Sh. et al. Multiple sclerosis: questions of diagnostics and treatment. Moscow; 2018. (In Russ.)
  5. Milo R., Korczyn A.D., Manouchehri N., Stüve O. The temporal and causal relationship between inflammation and neurodegeneration in multiple sclerosis. Mult. Scler. 2020;26(8):876–886. doi: 10.1177/1352458519886943
  6. Kuhlmann T., Moccia M., Coetzee T. et al. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 2023;22(1): 78–88. doi: 10.1016/S1474-4422(22)00289-7
  7. Koch-Henriksen N., Magyari M. Apparent changes in the epidemiology and severity of multiple sclerosis. Nat. Rev. Neurol. 2021;17(11):676–688. doi: 10.1038/s41582-021-00556-y
  8. Ward M., Goldman M.D. Epidemiology and pathophysiology of multiple sclerosis. Continuum (Minneap Minn). 2022;28(4):988–1005. doi: 10.1212/CON.0000000000001136
  9. Pashazadeh Kan F., Hoseinipalangi Z., Ahmadi N. et al. Global, regional and national quality of life in patients with multiple sclerosis: a global systematic review and meta-analysis. BMJ Support. Palliat. Care. 2022;12(2):158–166. doi: 10.1136/bmjspcare-2020-002604
  10. Penner I.K. Evaluation of cognition and fatigue in multiple sclerosis: daily practice and future directions. Acta Neurol. Scand. 2016;134 Suppl 200:19–23. doi: 10.1111/ane.12651
  11. Lakin L., Davis B.E., Binns C.C. et al. Comprehensive approach to management of multiple sclerosis: addressing invisible symptoms — a narrative review. Neurol. Ther. 2021;10(1):75–98. doi: 10.1007/s40120-021-00239-2
  12. Morrow S.A., Conway D., Fuchs T. et al. Quantifying cognition and fatigue to enhance the sensitivity of the EDSS during relapses. Mult. Scler. 2021;27(7):1077–1087. doi: 10.1177/1352458520973618
  13. Moccia M., Lanzillo R., Palladino R. et al. Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression. Mult. Scler. 2016;22(5):659–667. doi: 10.1177/1352458515599075
  14. Zhang J., Cortese R., De Stefano N., Giorgio A. Structural and functional connectivity substrates of cognitive impairment in multiple sclerosis. Front. Neurol. 2021;12:671894. doi: 10.3389/fneur.2021.671894
  15. Dekker I., Schoonheim M.M., Venkatraghavan V. et al. The sequence of structural, functional and cognitive changes in multiple sclerosis. Neuroimage Clin. 2021;29:102550. doi: 10.1016/j.nicl.2020.102550
  16. Lommers E., Guillemin C., Reuter G. et al. Voxel-Based quantitative MRI reveals spatial patterns of grey matter alteration in multiple sclerosis. Hum. Brain Mapp. 2021;42(4):1003–1012. doi: 10.1002/hbm.25274
  17. Ruet A., Brochet B. Cognitive assessment in patients with multiple sclerosis: from neuropsychological batteries to ecological tools. Ann. Phys. Rehabil. Med. 2020;63(2):154–158. doi: 10.1016/j.rehab.2018.01.006
  18. Benedict R.H., Cox D., Thompson L.L. et al. Reliable screening for neuropsychological impairment in multiple sclerosis. Mult. Scler. 2004;10(6):675–678. doi: 10.1191/1352458504ms1098oa
  19. Kalb R., Beier M., Benedict R.H. et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult. Scler. 2018;24(13):1665–1680. doi: 10.1177/1352458518803785
  20. De Meo E., Portaccio E., Giorgio A. et al. Identifying the distinct cognitive phenotypes in multiple sclerosis. JAMA Neurol. 2021;78(4):414–425. doi: 10.1001/jamaneurol.2020.4920
  21. Brochet B., Clavelou P., Defer G. et al. Cognitive impairment in secondary progressive multiple sclerosis: effect of disease duration, age, and progressive phenotype. Brain Sci. 2022;12(2):183. doi: 10.3390/brainsci12020183
  22. Gavrilov Y.V., Shkilnyuk G.G., Valko P.O. et al. Validation of the Russian version of the fatigue impact scale and fatigue severity scale in multiple sclerosis patients. Acta Neurol. Scand. 2018;138(5):408–416. doi: 10.1111/ane.12993
  23. Evdoshenko E., Laskova K., Shumilina M. et al. Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in the Russian Population. J. Int. Neuropsychol. Soc. 2022;28(5):503–510. doi: 10.1017/S1355617721000722
  24. Langdon D.W., Amato M.P., Boringa J. et al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult. Scler. 2012;18(6):891–898. doi: 10.1177/1352458511431076
  25. Beier M., Gromisch E.S., Hughes A.J. et al. Proposed cut scores for tests of the Brief International Cognitive Assessment of Multiple Sclerosis (BICAMS). J. Neurol. Sci. 2017;381:110–116. doi: 10.1016/j.jns.2017.08.019
  26. Morrow S.A. Normative data for the Stroop color word test for a North American population. Can. J. Neurol. Sci. 2013;40(6):842–847. doi: 10.1017/s0317167100015997
  27. Eijlers A.J.C., van Geest Q., Dekker I. et al. Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain. 2018;141(9):2605–2618. doi: 10.1093/brain/awy202
  28. Renner A., Baetge S.J., Filser M. et al. Characterizing cognitive deficits and potential predictors in multiple sclerosis: a large nationwide study applying Brief International Cognitive Assessment for Multiple Sclerosis in standard clinical care. J. Neuropsychol. 2020;14(3):347–369. doi: 10.1111/jnp.12202
  29. Planche V., Gibelin M., Cregut D. et al. Cognitive impairment in a population-based study of patients with multiple sclerosis: differences between late relapsing-remitting, secondary progressive and primary progressive multiple sclerosis. Eur. J. Neurol. 2016;23(2):282–289. doi: 10.1111/ene.12715
  30. Dackovic J., Pekmezovic T., Mesaros S. et al. The Rao's Brief Repeatable Battery in the study of cognition in different multiple sclerosis phenotypes: application of normative data in a Serbian population. Neurol. Sci. 2016;37(9):1475–1481. doi: 10.1007/s10072-016-2610-1
  31. Ruano L., Portaccio E., Goretti B. et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult. Scler. 2017;23(9):1258–1267. doi: 10.1177/1352458516674367
  32. Giedraitiene N., Kaubrys G., Kizlaitiene R. Cognition during and after multiple sclerosis relapse as assessed with the Brief International Cognitive Assessment for Multiple Sclerosis. Sci. Rep. 2018;8(1):8169. doi: 10.1038/s41598-018-26449-7
  33. Benedict R.H., Pol J., Yasin F. et al. Recovery of cognitive function after relapse in multiple sclerosis. Mult. Scler. 2021;27(1):71–78. doi: 10.1177/1352458519898108
  34. Wojcik C., Fuchs T.A., Tran H. et al. Staging and stratifying cognitive dysfunction in multiple sclerosis. Mult. Scler. 2022;28(3):463–471. doi: 10.1177/13524585211011390
  35. Amato M.P., Prestipino E., Bellinvia A. et al. Cognitive impairment in multiple sclerosis: an exploratory analysis of environmental and lifestyle risk factors. PLoS One. 2019;14(10):e0222929.
  36. doi: 10.1371/journal.pone.0222929
  37. Landmeyer N.C., Bürkner P.C., Wiendl H. et al. Disease-modifying treatments and cognition in relapsing-remitting multiple sclerosis: a meta-analysis. Neurology. 2020;94(22):e2373–e2383. doi: 10.1212/WNL.0000000000009522
  38. Merlo D., Kalincik T., Zhu C. et al. Subjective versus objective performance in people with multiple sclerosis using the MSReactor computerised cognitive tests. Mult. Scler. Relat. Disord. 2022;58:103393. doi: 10.1016/j.msard.2021.103393
  39. Davenport L., Cogley C., Monaghan R. et al. Investigating the association of mood and fatigue with objective and subjective cognitive impairment in multiple sclerosis. J. Neuropsychol. 2022;16(3):537–554. doi: 10.1111/jnp.12283
  40. Bellew D., Davenport L., Monaghan R. et al. Interpreting the clinical importance of the relationship between subjective fatigue and cognitive impairment in multiple sclerosis (MS): how BICAMS performance is affected by MS-related fatigue. Mult. Scler. Relat. Disord. 2022;67:104161. doi: 10.1016/j.msard.2022.104161
  41. Thomas G.A., Riegler K.E., Bradson M.L. et al. Subjective report, objective neurocognitive performance, and "Invisible symptoms" in multiple sclerosis. Arch. Clin Neuropsychol. 2023;38(2):169–181. doi: 10.1093/arclin/acac086

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Zabirova A.H., Bakulin I.S., Zakharova M.N., Gnedovskaya E.V., Suponeva N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».