Spectrum of Cognitive Impairment in Patients with Multiple Sclerosis
- Authors: Zabirova A.H.1, Bakulin I.S.1, Zakharova M.N.1, Gnedovskaya E.V.1, Suponeva N.A.1
-
Affiliations:
- Research Center of Neurology
- Issue: Vol 18, No 3 (2024)
- Pages: 5-13
- Section: Original articles
- URL: https://ogarev-online.ru/2075-5473/article/view/269310
- DOI: https://doi.org/10.17816/ACEN.1139
- ID: 269310
Cite item
Abstract
Introduction. Cognitive impairment (CI) is a common manifestation of multiple sclerosis (MS), which significantly affects patients’ daily life and professional activity. Despite the development of methods to screen MS patients for CI, data on its prevalence in the Russian population are still lacking.
Aim: to comprehensively assess cognitive functions in patients with different types of MS.
Materials and methods. The study included MS patients who did not have any other possible causes of CI and no diseases or conditions that confounded this assessment. CI was determined using the Brief International Cognitive Assessment in Multiple Sclerosis (BICAMS) test battery and the Stroop test as a decrease in the scores below the mean by at least 1.5 standard deviations. CI was subjectively assessed using the Perceived Deficit Questionnaire; fatigue was subjectively assessed using the Modified Fatigue Impact Scale (MFIS). The Mann–Whitney test and Fisher’s exact test were used for comparison, and the Spearman test was used to evaluate correlations.
Results. We evaluated 77 MS patients (30 men; age 40 [30; 48] years; 47 with relapsing-remitting MS, 30 with progressive MS). CI incidence was 23.4% in patients with relapsing-remitting MS and 77% in patients with progressive MS, while multi-domain CI was statistically significantly more common in patients with progressive MS. Impairment of processing speed was the most common. Patients with relapsing-remitting MS and CI were statistically significantly older and had longer disease duration than those without CI. There was a statistically significant correlation of subjective CI severity with MFIS scores but not with testing results.
Conclusion. CI incidence in MS patients was relatively high with greater severity and involvement of more domains in patients with progressive MS. No correlation was found between subjective and objective CI assessment results, which may suggest that patients underestimated their deficit.
Full Text
##article.viewOnOriginalSite##About the authors
Alfiia H. Zabirova
Research Center of Neurology
Author for correspondence.
Email: alfijasabirowa@gmail.com
ORCID iD: 0000-0001-8544-3107
research assistant, Non-invasive neuromodulation group, Institute of Neurorehabilitation and Recovery Technologies
Russian Federation, MoscowIlya S. Bakulin
Research Center of Neurology
Email: bakulinilya@gmail.com
ORCID iD: 0000-0003-0716-3737
Cand. Sci. (Med.), senior researcher, Head, Non-invasive neuromodulation group, Institute of Neurorehabilitation and Recovery Technologies
Russian Federation, MoscowMaria N. Zakharova
Research Center of Neurology
Email: zakharova@neurology.ru
ORCID iD: 0000-0002-1072-9968
Dr. Sci. (Med.), principal researcher, Head, 6th Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, MoscowElena V. Gnedovskaya
Research Center of Neurology
Email: gnedovskaya@mail.ru
ORCID iD: 0000-0001-6026-3388
Dr. Sci. (Med.), leading researcher, Deputy director for research, organizational work, Head, Institute of Medical Education and Professional Development
Russian Federation, MoscowNatalia A. Suponeva
Research Center of Neurology
Email: nasu2709@mail.ru
ORCID iD: 0000-0003-3956-6362
Dr. Sci. (Med.), Corresponding Member of RAS, Director, Institute of Neurorehabilitation and Recovery Technologies
Russian Federation, MoscowReferences
- GBD 2016 Multiple Sclerosis Collaborators. Global, regional, and national burden of multiple sclerosis 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(3):269–285. doi: 10.1016/S1474-4422(18)30443-5
- Ласков В.Б., Логачева Е.А., Третьякова Е.Е., Гриднев М.А. Клинико-эпидемиологические особенности больных рассеянным склерозом в Курской области. Неврология, нейропсихиатрия, психосоматика. 2017;9(1):55–60. Laskov V.B., Logacheva E.A., Tretyakova E.E., Gridnev M.A. Clinical and epidemiological features of patients with multiple sclerosis in the Kursk Region. Neurology, neuropsychiatry, psychosomatics. 2017;9(1):55–60. doi: 10.14412/2074-2711-2017-1-55-60
- Смагина И.В., Ельчанинова Е.Ю., Ельчанинова С.А. Рассеянный склероз в Алтайском крае: результаты проспективного эпидемиологического исследования. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2019;119(2-2): 7–11. Smagina I.V., Elchaninova E.Yu., Elchaninova S.A. Multiple sclerosis in the Altai region of Russia: a prospective epidemiological study. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(2-2):7–11. (In Russ.) doi: 10.17116/jnevro2019119227
- Захарова М.Н., Абрамова А.А., Аскарова Л.Ш. и др. Рассеянный склероз: вопросы диагностики и лечения. Практическое руководство для врачей. М.; 2018. Zakharova M.N., Abramova A.A., Askarova L.Sh. et al. Multiple sclerosis: questions of diagnostics and treatment. Moscow; 2018. (In Russ.)
- Milo R., Korczyn A.D., Manouchehri N., Stüve O. The temporal and causal relationship between inflammation and neurodegeneration in multiple sclerosis. Mult. Scler. 2020;26(8):876–886. doi: 10.1177/1352458519886943
- Kuhlmann T., Moccia M., Coetzee T. et al. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 2023;22(1): 78–88. doi: 10.1016/S1474-4422(22)00289-7
- Koch-Henriksen N., Magyari M. Apparent changes in the epidemiology and severity of multiple sclerosis. Nat. Rev. Neurol. 2021;17(11):676–688. doi: 10.1038/s41582-021-00556-y
- Ward M., Goldman M.D. Epidemiology and pathophysiology of multiple sclerosis. Continuum (Minneap Minn). 2022;28(4):988–1005. doi: 10.1212/CON.0000000000001136
- Pashazadeh Kan F., Hoseinipalangi Z., Ahmadi N. et al. Global, regional and national quality of life in patients with multiple sclerosis: a global systematic review and meta-analysis. BMJ Support. Palliat. Care. 2022;12(2):158–166. doi: 10.1136/bmjspcare-2020-002604
- Penner I.K. Evaluation of cognition and fatigue in multiple sclerosis: daily practice and future directions. Acta Neurol. Scand. 2016;134 Suppl 200:19–23. doi: 10.1111/ane.12651
- Lakin L., Davis B.E., Binns C.C. et al. Comprehensive approach to management of multiple sclerosis: addressing invisible symptoms — a narrative review. Neurol. Ther. 2021;10(1):75–98. doi: 10.1007/s40120-021-00239-2
- Morrow S.A., Conway D., Fuchs T. et al. Quantifying cognition and fatigue to enhance the sensitivity of the EDSS during relapses. Mult. Scler. 2021;27(7):1077–1087. doi: 10.1177/1352458520973618
- Moccia M., Lanzillo R., Palladino R. et al. Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression. Mult. Scler. 2016;22(5):659–667. doi: 10.1177/1352458515599075
- Zhang J., Cortese R., De Stefano N., Giorgio A. Structural and functional connectivity substrates of cognitive impairment in multiple sclerosis. Front. Neurol. 2021;12:671894. doi: 10.3389/fneur.2021.671894
- Dekker I., Schoonheim M.M., Venkatraghavan V. et al. The sequence of structural, functional and cognitive changes in multiple sclerosis. Neuroimage Clin. 2021;29:102550. doi: 10.1016/j.nicl.2020.102550
- Lommers E., Guillemin C., Reuter G. et al. Voxel-Based quantitative MRI reveals spatial patterns of grey matter alteration in multiple sclerosis. Hum. Brain Mapp. 2021;42(4):1003–1012. doi: 10.1002/hbm.25274
- Ruet A., Brochet B. Cognitive assessment in patients with multiple sclerosis: from neuropsychological batteries to ecological tools. Ann. Phys. Rehabil. Med. 2020;63(2):154–158. doi: 10.1016/j.rehab.2018.01.006
- Benedict R.H., Cox D., Thompson L.L. et al. Reliable screening for neuropsychological impairment in multiple sclerosis. Mult. Scler. 2004;10(6):675–678. doi: 10.1191/1352458504ms1098oa
- Kalb R., Beier M., Benedict R.H. et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult. Scler. 2018;24(13):1665–1680. doi: 10.1177/1352458518803785
- De Meo E., Portaccio E., Giorgio A. et al. Identifying the distinct cognitive phenotypes in multiple sclerosis. JAMA Neurol. 2021;78(4):414–425. doi: 10.1001/jamaneurol.2020.4920
- Brochet B., Clavelou P., Defer G. et al. Cognitive impairment in secondary progressive multiple sclerosis: effect of disease duration, age, and progressive phenotype. Brain Sci. 2022;12(2):183. doi: 10.3390/brainsci12020183
- Gavrilov Y.V., Shkilnyuk G.G., Valko P.O. et al. Validation of the Russian version of the fatigue impact scale and fatigue severity scale in multiple sclerosis patients. Acta Neurol. Scand. 2018;138(5):408–416. doi: 10.1111/ane.12993
- Evdoshenko E., Laskova K., Shumilina M. et al. Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in the Russian Population. J. Int. Neuropsychol. Soc. 2022;28(5):503–510. doi: 10.1017/S1355617721000722
- Langdon D.W., Amato M.P., Boringa J. et al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult. Scler. 2012;18(6):891–898. doi: 10.1177/1352458511431076
- Beier M., Gromisch E.S., Hughes A.J. et al. Proposed cut scores for tests of the Brief International Cognitive Assessment of Multiple Sclerosis (BICAMS). J. Neurol. Sci. 2017;381:110–116. doi: 10.1016/j.jns.2017.08.019
- Morrow S.A. Normative data for the Stroop color word test for a North American population. Can. J. Neurol. Sci. 2013;40(6):842–847. doi: 10.1017/s0317167100015997
- Eijlers A.J.C., van Geest Q., Dekker I. et al. Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain. 2018;141(9):2605–2618. doi: 10.1093/brain/awy202
- Renner A., Baetge S.J., Filser M. et al. Characterizing cognitive deficits and potential predictors in multiple sclerosis: a large nationwide study applying Brief International Cognitive Assessment for Multiple Sclerosis in standard clinical care. J. Neuropsychol. 2020;14(3):347–369. doi: 10.1111/jnp.12202
- Planche V., Gibelin M., Cregut D. et al. Cognitive impairment in a population-based study of patients with multiple sclerosis: differences between late relapsing-remitting, secondary progressive and primary progressive multiple sclerosis. Eur. J. Neurol. 2016;23(2):282–289. doi: 10.1111/ene.12715
- Dackovic J., Pekmezovic T., Mesaros S. et al. The Rao's Brief Repeatable Battery in the study of cognition in different multiple sclerosis phenotypes: application of normative data in a Serbian population. Neurol. Sci. 2016;37(9):1475–1481. doi: 10.1007/s10072-016-2610-1
- Ruano L., Portaccio E., Goretti B. et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult. Scler. 2017;23(9):1258–1267. doi: 10.1177/1352458516674367
- Giedraitiene N., Kaubrys G., Kizlaitiene R. Cognition during and after multiple sclerosis relapse as assessed with the Brief International Cognitive Assessment for Multiple Sclerosis. Sci. Rep. 2018;8(1):8169. doi: 10.1038/s41598-018-26449-7
- Benedict R.H., Pol J., Yasin F. et al. Recovery of cognitive function after relapse in multiple sclerosis. Mult. Scler. 2021;27(1):71–78. doi: 10.1177/1352458519898108
- Wojcik C., Fuchs T.A., Tran H. et al. Staging and stratifying cognitive dysfunction in multiple sclerosis. Mult. Scler. 2022;28(3):463–471. doi: 10.1177/13524585211011390
- Amato M.P., Prestipino E., Bellinvia A. et al. Cognitive impairment in multiple sclerosis: an exploratory analysis of environmental and lifestyle risk factors. PLoS One. 2019;14(10):e0222929.
- doi: 10.1371/journal.pone.0222929
- Landmeyer N.C., Bürkner P.C., Wiendl H. et al. Disease-modifying treatments and cognition in relapsing-remitting multiple sclerosis: a meta-analysis. Neurology. 2020;94(22):e2373–e2383. doi: 10.1212/WNL.0000000000009522
- Merlo D., Kalincik T., Zhu C. et al. Subjective versus objective performance in people with multiple sclerosis using the MSReactor computerised cognitive tests. Mult. Scler. Relat. Disord. 2022;58:103393. doi: 10.1016/j.msard.2021.103393
- Davenport L., Cogley C., Monaghan R. et al. Investigating the association of mood and fatigue with objective and subjective cognitive impairment in multiple sclerosis. J. Neuropsychol. 2022;16(3):537–554. doi: 10.1111/jnp.12283
- Bellew D., Davenport L., Monaghan R. et al. Interpreting the clinical importance of the relationship between subjective fatigue and cognitive impairment in multiple sclerosis (MS): how BICAMS performance is affected by MS-related fatigue. Mult. Scler. Relat. Disord. 2022;67:104161. doi: 10.1016/j.msard.2022.104161
- Thomas G.A., Riegler K.E., Bradson M.L. et al. Subjective report, objective neurocognitive performance, and "Invisible symptoms" in multiple sclerosis. Arch. Clin Neuropsychol. 2023;38(2):169–181. doi: 10.1093/arclin/acac086
Supplementary files
