Neuroimaging Markers for Differential Diagnosis Between Multifocal Motor Neuropathy and Multifocal Acquired Demyelinating Sensory and Motor Neuropathy

Abstract

Introduction. Similar asymmetric patterns of motor disorders and neurophysiological changes complicate the differential diagnosis between multifocal motor neuropathy (MMN) and multifocal acquired demyelinating sensory and motor neuropathy (MADSAM) as two chronic dysimmune neuropathies with significantly different treatment approaches. The lack of specific paraclinical markers often result in misdiagnosis and selection of ineffective specific therapy. Identification of specific neuroimaging biomarkers to differentiate these conditions may improve diagnostic approaches.

Objective: To identify neuroimaging markers for the differential diagnosis between MMN and MADSAM.

Materials and methods. The study included 65 participants, particularly 30 individuals with MMN and 35 individuals with MADSAM followed up in the Center of Peripheral Nervous System Diseases, Research Center of Neurology, Moscow, Russia. We retrospectively analyzed their clinical and epidemiological characteristics as well as ultrasonography and magnetic resonance imaging (MRI) findings.

Results. Ultrasonography was performed on the peripheral nerves of the upper extremities, the spinal nerves, and the brachial plexus. The results showed that participants with MADSAM had significantly greater cross-sectional areas (CSAs) and a higher incidence of intraneural ultrasonographic abnormalities compared to participants with MMN. CSA thresholds of the median nerves were identified using ROC analysis to differentiate between MMN and MADSAM. MRI scans of the brachial plexus revealed no abnormalities in 41.4% of the individuals with MMN and 27.3% of the individuals with MADSAM. Meanwhile, STIR hyperintense signal from the brachial plexus was most typical (> 70%) for the MADSAM group.

Conclusions. This was the first detailed comparative analysis of neuroimaging findings in a large sample of patients with either MMN or MADSAM in Russia. Ultrasonographic markers for differential diagnosis have been determined. The advantages and limitations of ultrasonography and MRI of the brachial plexus and the spinal and peripheral nerves in diagnosing multifocal chronic dysimmune neuropathies have been demonstrated.

About the authors

Taisiya A. Tumilovich

Research Center of Neurology

Author for correspondence.
Email: tumilovich.taisiya@bk.ru
ORCID iD: 0000-0002-9538-9690

neurologist, Center for Peripheral Nervous System Diseases, Institute of Clinical and Preventive Neurology

Russian Federation, Moscow

Victoria V. Sinkova

Research Center of Neurology

Email: tumilovich.taisiya@bk.ru
ORCID iD: 0000-0003-2285-2725

radiologist, Neuroradiology department, Institute of Clinical and Preventive Neurology

Russian Federation, Moscow

Daria A. Grishina

Research Center of Neurology

Email: tumilovich.taisiya@bk.ru
ORCID iD: 0000-0002-7924-3405

Cand. Sci. (Med.), Head, Center for Peripheral Nervous System Disesses, Institute of Clinical and Preventive Neurology

Russian Federation, Moscow

Natalia A. Suponeva

Research Center of Neurology

Email: tumilovich.taisiya@bk.ru
ORCID iD: 0000-0003-3956-6362

D. Sci. (Med.), Corresponding Member of RAS, Director, Institute of Neurorehabilitation and Rehabilitation Medicine

Russian Federation, Moscow

Sofya N. Morozova

Research Center of Neurology

Email: tumilovich.taisiya@bk.ru
ORCID iD: 0000-0002-9093-344X

Cand. Sci. (Med.), researcher, Neuroradiology department

Russian Federation, Moscow

Marina V. Krotenkova

Research Center of Neurology

Email: tumilovich.taisiya@bk.ru
ORCID iD: 0000-0003-3820-4554

D. Sci. (Med.), main researcher, Head, Neuroradiology department, Institute of Clinical and Preventive Neurology

Russian Federation, Moscow

Anna V. Mansurova

Research Center of Neurology

Email: tumilovich.taisiya@bk.ru
ORCID iD: 0000-0003-4547-1263

ultrasound specialist, Ultrasound diagnostic laboratory, Institute of Clinical and Preventive Neurology

Russian Federation, Moscow

Andrey O. Chechetkin

Research Center of Neurology

Email: tumilovich.taisiya@bk.ru
ORCID iD: 0000-0002-8726-8928

D. Sci. (Med.), Head, Ultrasound diagnostic laboratory, Institute of Clinical and Preventive Neurology

Russian Federation, Moscow

References

  1. Van den Bergh P.Y.K., van Doorn P.A., Hadden R.D.M. et al. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuro- pathy: Report of a joint Task Force-Second revision. J. Peripher. Nerv. Syst. 2021;26(3):242–268. doi: 10.1111/jns.12455
  2. Joint Task Force of the Efns and the Pns. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy: Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society — first revision. J. Peripher. Nerv. Syst. 2010;15(4):295–301. doi: 10.1111/j.1529-8027.2010.00290.x
  3. Al-Zuhairy A., Sindrup S.H., Andersen H., Jakobsen J. A population-based study of long-term outcome in treated chronic inflammatory demyelinating polyneuropathy. Muscle Nerve. 2020;61(3):316–324. doi: 10.1002/mus.26772
  4. Goedee H.S., Jongbloed B.A., van Asseldonk J.H. et al. A comparative study of brachial plexus sonography and magnetic resonance imaging in chronic inflammatory demyelinating neuropathy and multifocal motor neuropathy. Eur. J. Neurol. 2017;24(10):1307–1313. doi: 10.1111/ene.13380
  5. Морозова С.Н., Синькова В.В., Гришина Д.А. и др. Основы стандартной визуализации периферической нервной системы: МР-нейрография. Digital Diagnostics. 2023;4(3):356–368. Morozova S.N., Sinkova V.V., Grishina D.A. et al. Conventional magnetic resonance imaging of peripheral nerves: MR-neurography. Digital Diagnostics. 2023;4(3):356–368. doi: 10.17816/DD430292
  6. Telleman J.A., Herraets I.J.T., Goedee H.S. et al. Nerve ultrasound: a reproducible diagnostic tool in peripheral neuropathy. Neurology. 2019;92(5):e443–e450. doi: 10.1212/WNL.0000000000006856
  7. Kerasnoudis A., Pitarokoili K., Behrendt V. et al. Cross sectional area reference values for sonography of peripheral nerves and brachial plexus. Clin. Neurophysiol. 2013;124(9):1881–1888. doi: 10.1016/j.clinph.2013.03.007
  8. Grimm A., Axer H., Heiling B., Winter N. Nerve ultrasound normal values – Readjustment of the ultrasound pattern sum score UPSS. Clin. Neurophysiol. 2018;129(7):1403–1409. doi: 10.1016/j.clinph.2018.03.036
  9. Padua L., Granata G., Sabatelli M. et al. Heterogeneity of root and nerve ultrasound pattern in CIDP patients. Clin. Neurophysiol. 2014;125(1):160–165. doi: 10.1016/j.clinph.2013.07.023
  10. Taniguchi N., Itoh K., Wang Y. et al. Sonographic detection of diffuse peripheral nerve hypertrophy in chronic inflammatory demyelinating polyradiculoneuropathy. J. Clin. Ultrasound. 2000;28(9):488–491. doi: 10.1002/1097-0096(200011/12)28:9<488::aid-jcu7>3.0.co;2-7
  11. Matsuoka N., Kohriyama T., Ochi K. et al. Detection of cervical nerve root hypertrophy by ultrasonography in chronic inflammatory demyelinating polyradiculoneuropathy. J. Neurol. Sci. 2004;219(1-2):15–21. doi: 10.1016/j.jns.2003.11.011
  12. Zaidman C.M., Al-Lozi M., Pestronk A. Peripheral nerve size in normals and patients with polyneuropathy: an ultrasound study. Muscle Nerve. 2009;40(6):960–966. doi: 10.1002/mus.21431
  13. Granata G., Pazzaglia C., Calandro P. et al. Ultrasound visualization of nerve morphological alteration at the site of conduction block. Muscle Nerve. 2009;40(6):1068–1070. doi: 10.1002/mus.21449
  14. Imamura K., Tajiri Y., Kowa H., Nakashima K. Peripheral nerve hypertrophy in chronic inflammatory demyelinating polyradiculoneuropathy detec- ted by ultrasonography. Intern. Med. 2009;48(7):581–582. doi: 10.2169/internalmedicine.48.1924
  15. Padua L., Martinoli C., Pazzaglia C. et al. Intra- and internerve cross- sectional area variability: new ultrasound measures. Muscle Nerve. 2012; 45(5):730–733. doi: 10.1002/mus.23252
  16. Di Pasquale A., Morino S., Loreti S. et al. Peripheral nerve ultrasound changes in CIDP and correlations with nerve conduction velocity. Neurology. 2015;84(8):803–809. doi: 10.1212/WNL.0000000000001291
  17. Décard B.F., Pham M., Grimm A. Ultrasound and MRI of nerves for monitoring disease activity and treatment effects in chronic dysimmune neuropathies — current concepts and future directions. Clin. Neurophysiol. 2018;129(1):155–167. doi: 10.1016/j.clinph.2017.10.028
  18. Taylor B.V., Dyck P.J., Engelstad J. et al. Multifocal motor neuropathy: pathologic alterations at the site of conduction block. J. Neuropathol. Exp. Neurol. 2004;63(2):129–137. doi: 10.1093/jnen/63.2.129
  19. Grimm A., Vittore D., Schubert V. et al. Ultrasound pattern sum score, homogeneity score and regional nerve enlargement index for differentiation of demyelinating inflammatory and hereditary neuropathies. Clin. Neurophysiol. 2016;127(7):2618–2624. doi: 10.1016/j.clinph.2016.04.009
  20. Kerasnoudis A., Pitarokoili K., Behrendt V. et al. Bochum ultrasound score versus clinical and electrophysiological parameters in distinguishing acute-onset chronic from acute inflammatory demyelinating polyneuropathy. Muscle Nerve. 2015;51(6):846–852. doi: 10.1002/mus.24484
  21. Grimm A., Vittore D., Schubert V. et al. Ultrasound aspects in therapy-naive CIDP compared to long-term treated CIDP. J. Neurol. 2016;263(6):1074–1082. doi: 10.1007/s00415-016-8100-9
  22. Grimm A., Décard B.F., Axer H., Fuhr P. The Ultrasound pattern sum score - UPSS. A new method to differentiate acute and subacute neuropathies using ultrasound of the peripheral nerves. Clin. Neurophysiol. 2015;126(11):2216–2225. doi: 10.1016/j.clinph.2015.01.011
  23. Grimm A., Rattay T.W., Winter N., Axer H. Peripheral nerve ultrasound scoring systems: benchmarking and comparative analysis. J. Neurol. 2017;264(2):243–253. doi: 10.1007/s00415-016-8305-y
  24. Herraets I.J.T., Goedee H.S., Telleman J.A. et al. Nerve ultrasound for diagnosing chronic inflammatory neuropathy: a multicenter validation study. Neurology. 2020;95(12):e1745–e1753. doi: 10.1212/WNL.0000000000010369
  25. Kerasnoudis A., Pitarokoili K., Behrendt V. et al. Nerve ultrasound score in distinguishing chronic from acute inflammatory demyelinating polyneuropathy. Clin. Neurophysiol. 2014;125(3):635–641. doi: 10.1016/j.clinph.2013.08.014
  26. Дружинин Д.С., Наумова Е.С., Никитин С.С. Ультразвуковая визуализация периферических нервов при мультифокальной моторной нейропатии и хронической воспалительной демиелинизирующей полинейропатии. Нервно-мышечные болезни. 2016;6(1):63–73. Druzhinin D.S., Naumova E.S., Nikitin S.S. Nerve sonography in multifocal motor neuropathy and chronic inflammatory demyelinating polyneuropathy. Neuromuscular Diseases. 2016;6(1):63–73. doi: 10.17650/2222-8721-2016-6-1-63-73
  27. Kuwabara S., Nakajima M., Matsuda S., Hattori T. Magnetic resonance imaging at the demyelinative foci in chronic inflammatory demyelinating polyneuropathy. Neurology. 1997;48(4):874–877. doi: 10.1212/wnl.48.4.874
  28. Schady W., Goulding P.J., Lecky B.R. et al. Massive nerve root enlargement in chronic inflammatory demyelinating polyneuropathy. J. Neurol. Neurosurg. Psychiatry. 1996;61(6):636–640. doi: 10.1136/jnnp.61.6.636
  29. Midroni G., de Tilly L.N., Gray B., Vajsar J. MRI of the cauda equina in CIDP: clinical correlations. J. Neurol. Sci. 1999;170(1):36–44. doi: 10.1016/s0022-510x(99)00195-1
  30. Van Es H.W., Van den Berg L.H., Franssen H. et al. Magnetic resonance imaging of the brachial plexus in patients with multifocal motor neuropathy. Neurology. 1997;48(5):1218–1224. doi: 10.1212/wnl.48.5.1218
  31. Duggins A.J., McLeod J.G., Pollard J.D. et al. Spinal root and plexus hypertrophy in chronic inflammatory demyelinating polyneuropathy. Brain. 1999;122(Pt 7):1383–1390. doi: 10.1093/brain/122.7.1383
  32. Mikityansky I., Zager E.L., Yousem D.M., Loevner L.A. MR Imaging of the brachial plexus. Magn. Reson. Imaging Clin. N. Am. 2012;20(4):791–826. doi: 10.1016/j.mric.2012.08.003
  33. Jongbloed B.A., Bos J.W., Rutgers D. et al. Brachial plexus magnetic resonance imaging differentiates between inflammatory neuropathies and does not predict disease course. Brain Behav. 2017;7(5):e00632. doi: 10.1002/brb3.632
  34. Zaidman C.M., Pestronk A. Nerve size in chronic inflammatory demyelinating neuropathy varies with disease activity and therapy response over time: a retrospective ultrasound study. Muscle Nerve. 2014;50(5):733–738. doi: 10.1002/mus.24227
  35. Merola A., Rosso M., Romagnolo A. et al. Peripheral nerve ultrasonography in chronic inflammatory demyelinating polyradiculoneuropathy and multifocal motor neuropathy: correlations with clinical and neurophysiological data. Neurol. Res. Int. 2016;2016:9478593. doi: 10.1155/2016/9478593

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. ROC analysis of the significance of the median nerve CSA at various levels for the differential diagnosis between MMN and MADSAM.

Download (767KB)
3. Fig. 2. USG of BP trunks in a patient with MADSAM (8-year follow-up history, pre-therapy assessment). In the cross section, three primary trunks are seen in the scalene part, with enlarged upper (≤ 33.6 mm2; А), middle (≤ 68.9 mm2; В), and lower (≤ 94.8 mm2; С) primary trunks (reference < 8 mm2).

Download (319KB)
4. Fig. 3. MRI of BPs in a MMN patient (13-year follow-up history; assessed on maintenance therapy: intravenous immunoglobulin 1 g/kg every 4 weeks). The coronal STIR MRI showed significant (≤ 8 mm) bilateral uniform symmetric BP thickening, with hyperintense signal.

Download (295KB)
5. Fig. 4. MRI of BPs in a MADSAM patient (6-year follow-up history; assessed on maintenance therapy: intravenous immunoglobulin 1 g/kg every 12 weeks for 2 years). The coronal STIR MRI showed right-sided significant (≤ 12 mm) diffuse N7 thickening, with hyperintense signal. Hyperintense MRI signals from other right-sided BP elements were registered at the entire visible level with unchanged thickness. No changes on the left side.

Download (248KB)
6. Fig. 5. BP MRI in a MMN patient (10-year follow-up history, pre-therapy assessment). The coronal STIR MRI showed left-sided local N7 (≤ 11 mm) primary trunk thickening, with hyperintense signal. Thickness of other BP elements remained unchanged; however, hyperintense MRI signal was registered bilaterally.

Download (254KB)
7. Fig. 6. MRI of BPs in a MADSAM patient (6-year follow-up history; assessed during 2-year glucocorticosteroid therapy). Hyperintense STIR MRI signal bilaterally at the entire visible level without any thickened BP trunks.

Download (317KB)

Copyright (c) 2024 Tumilovich T.A., Sinkova V.V., Grishina D.A., Suponeva N.A., Morozova S.N., Krotenkova M.V., Mansurova A.V., Chechetkin A.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».