Approaches to classification of microembolic signals in patients recovering from ischemic stroke

Cover Page

Cite item

Full Text

Abstract

Introduction. Microembolus detection by transcranial Doppler (TCD) is the only non-invasive modality for visualization of cerebral embolism. Currently, there is no unified classification of recorded microembolic signals (MES) that could be used in clinical practice.

The aim of the study is to investigate biophysical MES parameters in patients with ischemic stroke, as well as to assess approaches to microemboli differentiation by structure and origin to improve the diagnostic accuracy of the method and to reduce the risk of recurrent ischemic events.

Materials and methods. The inclusion criterion was TCD-detected signs of MES. We analyzed the data of 28 patients with ischemic stroke (9 women and 19 men; mean age was 58 years ± 13). We recorded power, duration, and frequency for each MES, and calculated an energy index.

Results. A total of 938 MES were reported. In patients with cardioembolic stroke and all other pathogenetic stroke subtypes, biophysical parameter limits were as follows: 14.65 dB for the average power, 9.45 ms for the average duration, and 0.16 J for the average energy index. For patients with atrial fibrillation, characteristic MES power was found to be >13 dB. The MES frequency limit was determined to be 650 Hz for microemboli differentiation by acoustic density.

Conclusion. The data obtained can be used to further search for optimal limit ranges for biophysical parameters of various MES in order to establish a single MES classification, which will increase the diagnostic value of microembolus detection by TCD in stroke treatment practice.

About the authors

Ekaterina V. Orlova

Federal Сenter of Brain Research and Neurotechnologies

Author for correspondence.
Email: ekaterina.shlyk@gmail.com
ORCID iD: 0000-0002-4755-7565
SPIN-code: 3695-9148

Cand. Sci. (Med.), doctor of functional diagnostics, Department of ultrasound and functional diagnostics, Federal Center for Brain and Neurotechnologies, Moscow, Russia

Russian Federation, Moscow

Alexandr B. Berdalin

Federal Сenter of Brain Research and Neurotechnologies

Email: alex_berdalin@mail.ru
ORCID iD: 0000-0001-5387-4367
SPIN-code: 3681-6911

Cand. Sci. (Med.), senior researcher Research Center for Radiology and Clinical Physiology, Federal Center for Brain and Neurotechno- logies, Moscow, Russia

Russian Federation, Moscow

Vladimir G. Lelyuk

Federal Сenter of Brain Research and Neurotechnologies

Email: vglelyuk@fccps.ru
ORCID iD: 0000-0002-9690-8325
SPIN-code: 1066-9840

D. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Гусев Е.И., Коновалов А.Н., Скворцова В.И. Неврология. Национальное руководство: руководство для врачей. М.; 2015. 1064 с. Gusev E.I., Konovalov A.N., Skvortsova V.I. Neurology. National leadership: a guide for physicians. Moscow; 2015. 1064 р. (In Russ.)
  2. Адаскин А.В. Программно-алгоритмическое обеспечение измерительно-вычислительного комплекса для исследования потоков жидкости с инородными включениями на примере комплекса медицинского назначения. Дисс. ... канд. тех. наук Москва, 2008. 137 с. Adaskin A.V. Software and algorithmic support of the measuring and computing complex for the study of fluid flows with foreign inclusions on the example of a medical complex. PhD tech. sci. diss. Moscow; 2008. 137 p. (In Russ.)
  3. King A., Markus H.S. Doppler embolic signals in cerebrovascular disease and prediction of stroke risk: a systematic review and meta-analysis. Stroke. 2009;40(12):3711–3717. doi: 10.1161/STROKEAHA.109.563056
  4. Maida C.D., Norrito R.L., Daidone M. et al. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int. J. Mol. Sci. 2020;21(18):6454. doi: 10.3390/ijms21186454
  5. Muengtaweepongsa S., Tantibundhit C. Microembolic signal detection by transcranial Doppler: Old method with a new indication. World J. Methodol. 2018;8(3):40–43. doi: 10.5662/wjm.v8.i3.40
  6. Ritter M.A., Dittrich R., Thoenissen N. et al. Prevalence and prognostic impact of microembolic signals in arterial sources of embolism. A systematic review of the literature. J. Neurol. 2008;255(7):953–961. doi: 10.1007/s00415-008-0638-8
  7. Devuyst G., Darbellay G., Vesin J. et al. Automatic classification of HITS into artifacts or solid or gaseous emboli by a wavelet representation combined with dual — gate TCD. Stroke. 2001;32(12):2803–2809. doi: 10.1161/hs1201.099714
  8. Ringelstein E.B., Droste D.W., Babikian V.L. et al. Consensus on microembolus detection by TCD. International Consensus Group on Microembolus Detection. Stroke. 1998;29(3):725–729. doi: 10.1161/01.str.29.3.725
  9. Рыбалко Н.В., Кузнецов А.Н., Виноградов О.И. Применение индекса модуляции частоты для определения состава микроэмболического материала. Вестник Национального медико-хирургического Центра им. Н.И. Пирогова. 2015;(1):6–9. Rybalko N.V., Kuznetsov A.N., Vinogradov O.I. Application of the frequency modulation index to determine the composition of microembolic material. Bulletin of the N.I. Pirogov National Medical and Surgical Center. 2015;(1):6–9. (In Russ.)
  10. Banahan C., Rogerson Z., Rousseau C. et al. An in vitro comparison of embolus differentiation techniques for clinically significant macroemboli: dual-frequency technique versus frequency modulation method. Ultrasound Med. Biol. 2014;40(11):2642–2654. doi: 10.1016/j.ultrasmedbio.2014.06.003
  11. Brucher R., Russell D. Assessment of temporal bone beam distortion when using multifrequency Doppler to differentiate cerebral microemboli. Cerebrovasc. Dis. 2002; 13(Suppl 4):1134–1141.
  12. Markus H.S., Punter M. Can transcranial Doppler discriminate between solid and gaseous microemboli? Assessment of a dual-frequency transducer system. Stroke. 2005;36(8):1731–1734. doi: 10.1161/01.STR.0000173399.20127.b3
  13. Russell D., Brucher R. Online automatic discrimination between solid and gaseous cerebral microemboli with the first multifrequency transcranial Doppler. Stroke. 2002;33(8):1975–1980. doi: 10.1161/01.str.0000022809.46400.4b
  14. Adams H.P. Jr, Bendixen B.H., Kappelle L.J. et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41. doi: 10.1161/01.str.24.1.35
  15. Choi Y., Saqqur M., Stewart E. et al. Relative energy index of microembolic signal can predict malignant microemboli. Stroke. 2010;41(4):700–706. doi: 10.1161/STROKEAHA.109.573733
  16. Шлык Е.В. Дифференциально-диагностические признаки артерио-артериальной и кардиальной микроэмболии при проведении транскраниального допплеровского мониторирования кровотока мозговых артерий. Ультразвуковая и функциональная диагностика. 2011;(6):97. Shlyk E.V. Diagnostic signs of arterial and cardiac microembolia during transcranial doppler monitoring of blood flow in cerebral arteries. Ultrasound and Functional Diagnostics 2011;(6):97. (In Russ.)
  17. Yan J., Li Z., Wills M. et al. Intracranial microembolic signals might be a potential risk factor for cognitive impairment. Neurol. Res. 2021;43(11):867–873. doi: 10.1080/01616412.2021.1939488
  18. Das A.S., Regenhardt R.W., LaRose S. et al. Microembolic signals detected by transcranial Doppler predict future stroke and poor outcomes. J. Neuroimaging. 2020;30(6):882–889. doi: 10.1111/jon.12749

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Post-processing and expert analysis of biophysical MES parameters.

Download (368KB)
3. Fig. 2. ROC curve for MES parameter.

Download (201KB)
4. Fig. 3. MES power (dB) in various pathogenetic stroke subtypes.

Download (156KB)
5. Fig. 4. MES power (dB) with and without atrial fibrillation.

Download (85KB)

Copyright (c) 2023 Orlova E.V., Berdalin A.B., Lelyuk V.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».