Clinical markers for unfavorable course of multiple sclerosis

Cover Page

Cite item

Full Text

Abstract

Objective. To study possible clinical markers associated with the unfavorable course of multiple sclerosis and its transition to a progressive subtype.

Materials and methods. This prospective study included healthy volunteers and patients with relapsing-remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS), primary progressive multiple sclerosis (PPMS). For a comprehensive clinical evaluation, the participants completed the Timed 25-Foot Walk Test (T25-FW), Nine-Hole Peg Test (9-HPT), Symbol Digit Modalities Test (SDMT), Fatigue test, and MSProDiscuss questionnaires. Then we compared the results between the groups.

Results. We found significant differences between the groups in regard to most of the tests. Furthermore, we proposed a composite clinical score (CCS) based on T25-FW, SDMT, and 9-HPT results (for both hands).

Discussion. Our CCS can be a useful clinical tool to determine the most likely course of multiple sclerosis at a certain timepoint.

About the authors

Mariya S. Matrosova

Research Center of Neurology

Author for correspondence.
Email: matrosova@neurology.ru
ORCID iD: 0000-0003-4604-7288
SPIN-code: 4322-6488

radiologist, PhD student, Research Center of Neurology, Moscow, Russia

Russian Federation, Moscow

Galina N. Belskaya

Research Center of Neurology

Email: belskaya@neurology.ru
ORCID iD: 0000-0001-9831-8970

D. Sci. (Med.), Professor, Head, Multidisciplinary clinical and diagnostic center, Research Center of Neurology, Moscow, Russia

Russian Federation, Moscow

Vasiliy V. Bryukhov

Research Center of Neurology

Email: abdomen@rambler.ru
ORCID iD: 0000-0002-1645-6526
SPIN-code: 6299-3604

Cand. Sci. (Med.), radiologist, senior researcher, Research Center of Neurology, Moscow, Russia

Russian Federation, Moscow

Ekaterina V. Popova

City Clinical Hospital No. 24, Moscow; Pirogov Russian National Research Medical University

Email: matrosova@neurology.ru
ORCID iD: 0000-0003-2676-452X

D. Sci. (Med.), Head, Multiple sclerosis сenter, City Clinical Hospital No. 24, Moscow, Russia; Assoc. Prof., Department of neurology, neurosurgery and medical genetics, Pirogov Russian National Research Medical University, Moscow, Russia

Russian Federation, Moscow; Moscow

Marina V. Krotenkova

Research Center of Neurology

Email: krotenkova_mrt@mail.ru
ORCID iD: 0000-0003-3820-4554
SPIN-code: 9663-8828

D. Sci. (Med.), main researcher, Head, Department of radiology, Research Center of Neurology, Moscow, Russia

Russian Federation, Moscow

References

  1. Захарова М.Н., Абрамова А.А., Аскарова Л.Ш. и др. Рассеянный склероз: вопросы диагностики и лечения. М.; 2018. Zakharova M.N., Abramova A.A., Askarova L.Sh. et al. Multiple sclerosis: issues of diagnosis and treatment. Moscow; 2018. doi: 10.25697/MM.2018.01.11
  2. Mahad D.H., Trapp B.D., Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–193. doi: 10.1016/S1474-4422(14)70256-X
  3. Kutzelnigg A., Lassmann H. Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb. Clin. Neurol. 2014;122:15–58. doi: 10.1016/B978-0-444-52001-2.00002-9
  4. Katz Sand I., Krieger S., Farrell C., Miller A.E. Diagnostic uncertainty during the transition to secondary progressive multiple sclerosis. Mult. Scler. 2014;20(12):1654–1657. doi: 10.1177/1352458514521517
  5. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis. An expanded disability status scale (EDSS). Neurology. 1983;33(11):1444. doi: 10.1212/WNL.33.11.1444
  6. Хачанова Н.В., Бойко А.Н., Бахтиярова К.З. и др. Рекомендации экспертного совещания «Вторично-прогрессирующий рассеянный склероз: нерешенные вопросы и перспективы». Неврология, нейропсихиатрия, психосоматика. 2019;11(4):172–175. Khachanova N.V., Boyko A.N., Bakhtiyarova K.Z. et al. Recommendations from the Expert Meeting «Secondary progressive multiple sclerosis: unresolved issues and prospects». Neurology, Neuropsychiatry, Psychosomatics. 2019;11(4):172–175. doi: 10.14412/2074-2711-2019-4-172-175
  7. Rudick R.A., Polman C.H., Cohen J.A. et al. Assessing disability progression with the Multiple Sclerosis Functional Composite. Mult. Scler. 2009;15(8):984–997. doi: 10.1177/1352458509106212
  8. Meyer-Moock S., Maeurer Y.S., Feng M. et al. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol. 2014;14:58. doi: 10.1186/1471-2377-14-58
  9. Lublin F.D., Reingold S.C., Cohen J.A. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–286. doi: 10.1212/WNL.0000000000000560
  10. Sikes E.M., Cederberg K.L., Sandroff B.M. et al. Quantitative Synthesis of Timed 25-Foot Walk Performance in Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2020;101(3):524–534. doi: 10.1016/j.apmr.2019.08.488
  11. Benedict R.H., DeLuca J., Phillips G. et al. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult. Scler. 2017;23(5):721–733. doi: 10.1177/1352458517690821
  12. Strober L., DeLuca J., Benedict R.H. et al. Symbol Digit Modalities Test: a valid clinical trial endpoint for measuring cognition in multiple sclerosis. Mult. Scler. 2019;25(13):1781–1790. doi: 10.1177/1352458518808204
  13. Fischer J.S., Rudick R.A., Cutter G.R., Reingold S.C. The Multiple Sclerosis Functional Composite Measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Mult. Scler. 1999;5(4):244–250. doi: 10.1177/135245859900500409
  14. Orbach R., Zhao Z., Wang Y.C. et al. Comparison of disease activity in SPMS and PPMS in the context of multicenter clinical trials. PLoS One. 2012;7(10):e45409. doi: 10.1371/journal.pone.0045409
  15. Brenton J.N., Koshiya H., Woolbright E., Goldman M.D. The Multiple Sclerosis Functional Composite and Symbol Digit Modalities Test as outcome measures in pediatric multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2019;5(2):2055217319846141. doi: 10.1177/2055217319846141
  16. Лащ Н.Ю., Бойко А.Н. Утомляемость при рассеянном склерозе и возможности ее коррекции. Неврология, нейропсихиатрия, психосоматика. 2016;8(1):82–85. Lashch N.Yu., Boiko A.N. Multiple sclerosis-related fatigue and possibilities of its correction. Neurology, neuropsychiatry, psychosomatics. 2016;8(1):82–85. doi: 10.14412/2074-2711-2016-1-82-85
  17. Beckerman H., Eijssen I.C., van Meeteren J. et al. Fatigue profiles in patients with multiple sclerosis are based on severity of fatigue and not on dimensions of fatigue. Sci. Rep. 2020;10:4167. doi: 10.1038/s41598-020-61076-1
  18. Ziemssen T., Piani-Meier D., Bennett B. et al. A physician-completed digital tool for evaluating disease progression (multiple sclerosis progression discussion tool): validation study. J. Med. Internet Res. 2020;22(2):e16932. doi: 10.2196/16932
  19. Волков А.И., Попова Е.В. Новые инструменты для раннего выявления прогрессирования рассеянного склероза. Опросник MSProDiscuss. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2020;120(7–2):43–47. Volkov A.I., Popova E.V. New tools for early detection of multiple sclerosis progression: MSProDiscuss questionnaire. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2020;120(7–2):43–47. doi: 10.17116/jnevro202012007243
  20. Hamdy E., Talaat F., Ramadan I. et al. Diagnosing ‘transition’ to secondary progressive multiple sclerosis (SPMS): a step-by-step approach for clinicians. Mult. Scler. Relat. Disord. 2022;60:103718. doi: 10.1016/j.msard.2022.103718
  21. Симанив Т.О., Захарова М.Н. Сложность дифференциальной диагностики первично-прогрессирующего рассеянного склероза. Medica mente. 2018;4(1):29–32. Simaniv T.O., Zakharova M.N. Difficulty of differential diagnosis in primary-progressive multiple sclerosis. Medica Mente. 2018;4(1):29–32. doi: 10.25697/MM.2018.01.07
  22. Gaser C., Dahnke R., Thompson P.M. et al. Alzheimer’s disease neuroimaging initiative. CAT — a computational anatomy toolbox for the analysis of structural MRI data. bioRxiv. 2022.06.11.495736. doi: 10.1101/2022.06.11.495736
  23. Sumowski J.F., Benedict R., Enzinger C. et al. Cognition in multiple sclerosis: state of the field and priorities for the future. Neurology. 2018;90(6):278–288. doi: 10.1212/WNL.0000000000004977
  24. Кротенкова И.А., Брюхов В.В., Переседова А.В., Кротенкова М.В. Атрофия центральной нервной системы при рассеянном склерозе: данные МРТ-морфометрии. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2014;114(10-2):50–56. Krotenkova I.A., Briukhov V.V., Peresedova A.V., Krotenkova M.V. Atrophy of the central nervous system in multiple sclerosis: MRI-morphometry results. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2014;114(10-2):50–56.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Testing results: EDSS score (А), N25-FW test (B), 9-HPT D test (C), 9-HPT ND test (D), SDMT test (E); Fatigue Severity scale (F).

Download (385KB)
3. Fig. 2. ROC curve: composite clinical score for the multiple sclerosis.

Download (111KB)
4. Fig. 3. Differences in CCS MS between the RRMS and PPMS groups (A). Correlation between CCS MS and probability of MS progression according to the MSProDiscuss score (B), patient's age (C), and EDSS score (D).

Download (333KB)
5. Fig. 4. CCS MS correlation with the relative volume of white matter (А) and with the relative volume of the pulvinar (В).

Download (174KB)

Copyright (c) 2023 Matrosova M.S., Belskaya G.N., Bryukhov V.V., Popova E.V., Krotenkova M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».