Copper Ions Reduced Toxicity of Sodium Azide and Lipopolysaccharide on Cultured Cerebellar Granule Neurons
- Authors: Stelmashook E.V.1, Alexandrova O.P.1, Genrikhs E.E.1, Verma Y.2, Salmina A.B.1, Isaev N.K.1,3
-
Affiliations:
- Research Center of Neurology
- Chaudhary Charan Singh University
- Lomonosov Moscow State University
- Issue: Vol 17, No 4 (2023)
- Pages: 52-57
- Section: Original articles
- URL: https://ogarev-online.ru/2075-5473/article/view/251939
- DOI: https://doi.org/10.54101/ACEN.2023.4.6
- ID: 251939
Cite item
Abstract
Introduction. Copper ions (Cu2+) are structural elements of proteins such as cytochrome с oxidase (Complex IV), an enzyme that catalyzes the final step of electron transfer to oxygen during oxidative phosphorylation in the mitochondria. With Cu2+ homeostasis being of utmost importance, its disturbances in the central nervous system are involved in the mechanisms of many neurodegenerative and other brain disorders.
This study aimed to assess the effects of non-toxic copper ion levels on death of cerebellar granule neurons associated with lipopolysaccharide (LPS; in vitro inflammation model) or azide sodium (NaN3; cytochrome с oxidase inhibitor).
Materials and methods. LPS (10 μg/mL) or NaN3 (250 μM) was added on day 7 to 8 to the culture medium with rat cerebellar cells for 24 hours in vitro. Nitrite concentrations were measured in the culture medium by Griess assay; absorbance was recorded with a spectrophotometer at 540 nm, and morphologically intact cells were counted as survived neurons.
Results. Added to the culture medium, LPS or NaN3 reduced neuron survival to 15 ± 2% or 20 ± 3% vs. control, respectively. Cu2+ (0.5 to 5.0 μM) increased neuron survival in a dose-dependent manner to 78 ± 4% with toxic levels of LPS and to 86 ± 6% with NaN3 with 5 μM Cu2+. The concentration of nitrites in the control culture medium was 2.0 ± 0.2 μM. Added to the cell cultures, LPS increased the concentration of nitrites to 8.5 ± 0.5 μM. Cu2+ 5 μM did not show any significant effects on nitrite accumulation in the culture medium.
Conclusions. We showed that copper ions can exert protective effects on neurons against LPS-induced or NaN3-induced toxicity. This protection is likely to be associated rather with Cu2+ interaction with Complex IV of the electron transfer chain in the mitochondria than with inhibition of NO production. Effects of Cu2+ on apoptosis pathway proteins also cannot be ruled out.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Elena V. Stelmashook
Research Center of Neurology
Author for correspondence.
Email: estelmash@mail.ru
ORCID iD: 0000-0003-2533-7673
D. Sci. (Biol.), Leading Researcher, Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute
Russian Federation, MoscowOlga P. Alexandrova
Research Center of Neurology
Email: molka-molka@yandex.ru
ORCID iD: 0009-0006-9109-1463
Cand. Sci. (Biol.), Researcher, Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute
Russian Federation, MoscowElizaveta E. Genrikhs
Research Center of Neurology
Email: genrikhs@neurilogy.ru
ORCID iD: 0000-0002-3203-0250
Cand. Sci. (Biol.), Senior Researcher, Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute
Russian Federation, MoscowYeshvandra Verma
Chaudhary Charan Singh University
Email: yeshvandra@gmail.com
ORCID iD: 0000-0002-5994-7501
Department of Toxicology
India, MeerutAlla B. Salmina
Research Center of Neurology
Email: allasalmina@mail.ru
ORCID iD: 0000-0003-4012-6348
Professor, Chief Researcher, Head, Laboratory of Neurobiology and Tissue Engineering, Department of Molecular and Cellular Mechanisms of Neuroplasticity, Brain Science Institute
Russian Federation, MoscowNickolay K. Isaev
Research Center of Neurology; Lomonosov Moscow State University
Email: nisaev61@mail.ru
ORCID iD: 0000-0001-8427-1163
D. Sci. (Biol.), Leading Researcher, Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute, Research Center of Neurology; Department of Cell Biology and Histology, Biological Faculty, Lomonosov Moscow State University
Russian Federation, Moscow; MoscowReferences
- Gromadzka G., Tarnacka B., Flaga A., Adamczyk A. Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int. J. Mol. Sci. 2020;21(23):9259. doi: 10.3390/ijms21239259
- An Y., Li S., Huang X. et al. The role of Copper homeostasis in brain disease. Int J. Mol. Sci. 2022;23(22):13850. doi: 10.3390/ijms232213850
- Bost M., Houdart S., Oberli M. et al. Dietary copper and human health: current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016;35:107–115. doi: 10.1016/j.jtemb.2016.02.006
- Сальков В.Н., Худоерков Р.М., Сухоруков В.С. Патогенетические аспекты повреждений головного мозга при болезни Вильсона–Коновалова. Российский вестник перинатологии и педиатрии. 2020;65(6):22–28. Salkov V.N., Khudoerkov R.M., Sukhorukov V.S. Pathogenetic aspects of brain lesions in Wilson–Konovalov disease. Russian Bulletin of Perinatology and Pediatrics. 2020;65(6):22–28 (in Russ.) doi: 10.21508/1027-4065-2020-65-6-22-28
- Isaev N.K., Stelmashook E.V., Genrikhs E.E. Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer's disease. Rev. Neurosci. 2020;31(3):233–243. doi: 10.1515/revneuro-2019-0052
- Гулевская Т.С., Чайковская Р.П., Ануфриев П.Л. Патоморфология головного мозга при гепатолентикулярной дегенерации (болезни Вильсона–Коновалова). Анналы клинической и экспериментальной неврологии. 2020;14(2):50–61. Gulevskaya T.S., Chaykovskaya R.P., Anufriev P.L. Cerebral pathology in hepatolenticular degeneration (Wilson disease). Annals of Clinical and Experimental Neurology. 2020;14(2):50–61. (in Russ) doi: 10.25692/ACEN.2020.2.7
- Fujimoto Y., Maruta S., Yoshida A., Fujita T. Effect of transition metal ions on lipid peroxidation of rabbit renal cortical mitochondria. Res. Commun. Chem. Pathol. Pharmacol. 1984;44(3):495–498.
- Jimenez Del Rio M., Velez-Pardo C. Transition metal-induced apoptosis in lymphocytes via hydroxyl radical generation, mitochondria dysfunction, and caspase-3 activation: an in vitro model for neurodegeneration. Arch. Med. Res. 2004;35(3):185–193. doi: 10.1016/j.arcmed.2004.01.001
- Su X.Y., Wu W.H., Huang Z.P. et al. Hydrogen peroxide can be generated by tau in the presence of Cu(II). Biochem. Biophys. Res. Commun. 2007;358(2):661–665. doi: 10.1016/j.bbrc.2007.04.191
- Stelmashook E.V., Genrikhs E.E., Kapkaeva M.R. et al. N-acetyl-l-cysteine in the presence of Cu2+ induces oxidative stress and death of granule neurons in dissociated cultures of rat cerebellum. Biochemistry (Mosc.). 2017;82(10):1176–1182. doi: 10.1134/S0006297917100108
- Stelmashook E.V., Isaev N.K., Genrikhs E.E., et al. Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer's and Parkinson's diseases. Biochemistry (Mosc.). 2014;79(5):391–396. doi: 10.1134/S0006297914050022
- Agarwal P., Ayton S., Agrawal S. et al. Brain copper may protect from cognitive decline and Alzheimer's disease pathology: a community-based study. Mol. Psychiatry. 2022;27(10):4307–4313. doi: 10.1038/s41380-022-01802-5
- Whitehouse M.W., Walker W.R. Copper and inflammation. Agents Actions. 1978;8(1-2):85–90. doi: 10.1007/BF01972407
- Berthon G. Is copper pro- or anti-inflammatory? A reconciling view and a novel approach for the use of copper in the control of inflammation. Agents Actions. 1993;39(3–4):210–217. doi: 10.1007/BF01998975
- Caetano-Silva M.E., Rund L.A., Vailati-Riboni M. et al. Copper-binding peptides attenuate microglia inflammation through suppression of NF-kB pathway. Mol. Nutr. Food Res. 2021;65(22):e2100153. doi: 10.1002/mnfr.202100153
- Bal-Price A., Brown G.C. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci. 2001;21(17):6480–6491. doi: 10.1523/JNEUROSCI.21-17-06480.2001
- Ghasemi M., Mayasi Y., Hannoun A. et al. Nitric oxide and mitochondrial function in neurological diseases. Neuroscience. 2018;376:48–71. doi: 10.1016/j.neuroscience.2018.02.017
- Singh S., Zhuo M., Gorgun F.M., Englander E.W. Overexpressed neuroglobin raises threshold for nitric oxide-induced impairment of mitochondrial respiratory activities and stress signaling in primary cortical neurons. Nitric Oxide. 2013;32:21–28. doi: 10.1016/j.niox.2013.03.008
- Brunori M., Giuffrè A., Forte E. et al. Control of cytochrome c oxidase activity by nitric oxide. Biochim. Biophys. Acta. 2004;1655(1–3):365–371. doi: 10.1016/j.bbabio.2003.06.008
- Mason M.G., Nicholls P., Wilson M.T., Cooper C.E. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc. Natl. Acad. Sci. U. S. A. 2006;103(3):708–713. doi: 10.1073/pnas.0506562103
- Torres J., Wilson M.T. The reactions of copper proteins with nitric oxide. Biochim. Biophys. Acta. 1999;1411(2–3):310–322. doi: 10.1016/s0005-2728(99)00022-5
- Larsen F.J., Schiffer T.A., Weitzberg E., Lundberg J.O. Regulation of mitochondrial function and energetics by reactive nitrogen oxides. Free Radic. Biol. Med. 2012;53(10):1919–1928. doi: 10.1016/j.freeradbiomed.2012.08.580
- Tsvetkov P., Coy S., Petrova B. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–1261. doi: 10.1126/science.abf0529
- Rubio-Osornio M., Orozco-Ibarra M., Díaz-Ruiz A. et al. Copper sulfate pretreatment prevents mitochondrial electron transport chain damage and apoptosis against MPP+-induced neurotoxicity. Chem. Biol. Interact. 2017;271:1–8. doi: 10.1016/j.cbi.2017.04.016
- Islas-Cortez M., Rios C., Rubio-Osornio M. et al. Characterization of the antiapoptotic effect of copper sulfate on striatal and midbrain damage induced by MPP+ in rats. Neurotoxicology. 2021;82:18–25. doi: 10.1016/j.neuro.2020.10.011
- Alcaraz-Zubeldia M., Boll-Woehrlen M.C., Montes-López S. et al. Copper sulfate prevents tyrosine hydroxylase reduced activity and motor deficits in a Parkinson's disease model in mice. Rev. Invest. Clin. 2009;61(5):405–411.
- Varhaug K.N., Kråkenes T., Alme M.N. et al. Mitochondrial complex IV is lost in neurons in the cuprizone mouse model. Mitochondrion. 2020;50:58–62. doi: 10.1016/j.mito.2019.09.003
- Shiri E., Pasbakhsh P., Borhani-Haghighi M. et al. Mesenchymal stem cells ameliorate cuprizone-induced demyelination by targeting oxidative stress and mitochondrial dysfunction. Cell. Mol. Neurobiol. 2021;41(7):1467–1481. doi: 10.1007/s10571-020-00910-6
Supplementary files
