Factors that pre-determine the main subtypes of ischemic stroke in middle-aged and senior women

Cover Page

Cite item

Full Text

Abstract

Introduction. Brain health and active longevity are affected by a number of stroke risk factors. We should identify their relative impact on the main subtypes of ischemic stroke (IS) in middle-aged and senior women to consider prevention and management strategies.

Objective. To assess prevalence of isolated and combined factors that may contribute with a high probability to development of the various IS subtypes in women aged 45–74 years.

Materials and methods. The study included 348 female patients aged 45–74 years including 145 inpatients with carotid IS (main group) from Neurology Department 2, the Research Center of Neurology, and 203 women with cognitive disorders due to the chronic cerebral ischemia (controls). To assess the impact of various risk factors on the main IS subtypes, we generated multivariate predictive models using logistic regression and the Wald test.

Results. Predictive modeling of atherothrombotic IS demonstrated that type 2 diabetes mellitus increases IS risk by over 5 times (odds ratio [OR] = 5.961; 95% confidence interval [CI] 1.102–32.257; р = 0.038); internal carotid artery stenosis, by 7 times (OR = 7.187; 95% CI 1.827–28.273; р = 0.005); history of transient ischemic attacks (TIA), by 61 times (OR = 61.442; 95% CI 7.673–491.998; р < 0.001); excessive alcohol intake, by 49 times (OR = 49,382; 95% CI 4.557–535.121; р = 0.001); and HTN severity, by 4 times (OR = 4.445; 95% CI 2.331–8.476; р < 0.001). Predictive modeling of cardioembolic IS demonstrated that post-infarction cardiosclerosis increases IS risk by over 118 times (OR = 118.025; 95% CI 5.210–2673.796; р = 0.003), atrial fibrillation, by 108 times (OR = 108.493; 95% CI 24.312–484.159; р < 0.001), history of TIA, by over 71 times (OR = 71.558; 95% CI 7.945–644.535; р < 0.001); and HTN severity, by over 3 times (OR = 3.957; 95% CI 2.069–7.566; р < 0.001). Predictive modeling of lacunar IS demonstrated that type 2 diabetes mellitus increases IS risk by 8 times (OR = 8.324; 95% CI 1.923–36.041; р = 0.005), history of IS, by over 8 times (OR = 8.99; 95% CI 1.772–45.598; р = 0.008); and HTN severity, by 7 times (OR = 7.139; 95% CI 3.491–14.599; р < 0.001).

Conclusion. We identified a number of risk factors that may contribute to the development of the main IS subtypes in middle-aged and senior women.

 

About the authors

Marina Yu. Maximova

Research Center of Neurology

Author for correspondence.
Email: ncnmaximova@mail.ru
ORCID iD: 0000-0002-7682-6672

D. Sci (Med,), Professor, Head, 2nd Neurology department, Research Center of Neurology

Russian Federation, Moscow

Valeriya Yu. Sazonova

Research Center of Neurology

Email: ncnmaximova@mail.ru
ORCID iD: 0000-0002-8813-530X

Neurologist, Scientific Advisory Department, Research Center of Neurology

Russian Federation, Moscow

References

  1. Инсульт: современные технологии диагностики и лечения / Под ред. М.А. Пирадова, М.М. Танашян, М.Ю. Максимовой. М.; 2018. 360 с. Stroke: modern technologies for diagnosis and treatment / Eds. M.A. Piradov, M.M. Tanashyan, M.Yu. Maksimova. Мoscow; 2018. 360 p.
  2. Гнедовская Е.В., Кравченко М.А., Прокопович М.Е. и др. Распространённость факторов риска цереброваскулярных заболеваний в возрасте 40–59 лет (клинико-эпидемиологическое исследование). Анналы клинической и экспериментальной неврологии. 2016; 10(4): 11–19. Gnedovskaya E.V., Kravchenko M.A., Prokopovich М.E. et al. Prevalence of the risk factors of cerebrovascular disorders in the capital city residents aged 40–59: a clinical and epidemiological study. Annals of Clinical and Experimental Neurology. 2016; 10(4): 11–19. doi: 10.17816/psaic13
  3. Суслина З.А., Гулевская Т.С., Максимова М.Ю., Моргунов В.А. Нарушения мозгового кровообращения: диагностика, лечение, профилактика. М.; 2016. 536 с. Suslina Z.A., Gulevskaya T.S., Maksimova M.Yu., Morgunov V.A. Cerebral circulation disorders: diagnosis, treatment, prevention, Moscow; 2016. 536 p.
  4. Samai A.A., Martin-Schild S. Sex differences in predictors of ischemic stroke: current perspectives. Vasc Health Risk Manag. 2015; 11: 427–436. doi: 10.2147/VHRM.S65886
  5. Максимова М.Ю., Айрапетова А.С. Влияет ли пол на клинические характеристики ишемического инсульта у пациентов в возрасте 45–74 лет. Анналы клинической и экспериментальной неврологии. 2021; 15(1): 32–42. Maksimova M.Yu., Airapetova A.S. Does gender influence the clinical characteristics of ischaemic stroke in patients aged 45–74 years? Annals of clinical and experimental neurology. 2021; 15(1): 21–42. (In Russ.) doi: 10.25692/ACEN.2021.1.4
  6. Rexrode K.M., Madsen T.E., Yu A.Y.X. et al. The impact of sex and gender on stroke. Circ. Res. 2022; 130(4): 512–528. doi: 10.1161/CIRCRESAHA.121.319915
  7. Bushnell C.D., Chaturvedi S., Gage K.R. et al. Sex differences in stroke: challenges and opportunities. Cereb. Blood Flow Metab. 2018; 38(12): 2179–2191. doi: 10.1177/0271678X18793324
  8. Sacco R.L., Khatri M., Rundek T. et al. Improving global vascular risk prediction with behavioral and anthropometric factors. The multiethnic NOMAS (Northern Manhattan Cohort Study). J. Am. Coll. Cardiol. 2009; 54(24): 2303–2311. doi: 10.1016/j.jacc.2009.07.047
  9. Chen C.L.H., Rundek T. Vascular brain health. Stroke. 2021; 52(11): 3700–3705. doi: 10.1161/STROKEAHA.121.033450.
  10. Bushnell C.D., Kapral M.K. Advances in stroke: stroke in women. Stroke. 2022; 53(2): 605–607. doi: 10.1161/STROKEAHA.121.036975
  11. Leppert M.H., Burke J.F., Lisabeth L.D. et al. Systematic review of sex differences in ischemic strokes among young adults: are young women disproportionately at risk? Stroke. 2022; 53(2): 319–327. doi: 10.1161/STROKEAHA.121.037117
  12. Carcel C., Harris K., Peters S.A.E. et al. Representation of women in stroke clinical trials: a review of 281 trials involving more than 500,000 participants. Neurology. 2021; 97(18): e1768–e1774. doi: 10.1212/WNL.0000000000012767
  13. Jin X., Chandramouli C., Allocco B. et al. Women’s participation in cardiovascular clinical trials from 2010 to 2017. Circulation. 2020; 141(7): 540–548. doi: 10.1161/CIRCULATIONAHA.119.043594
  14. Gulati M. Improving the cardiovascular health of women in the nation: mo-ving beyond the bikini boundaries. Circulation. 2017; 135(6): 495–498. doi: 10.1161/CIRCULATIONAHA.116.025303
  15. Kumar A., McCullough L. Cerebrovascular disease in women. Ther. Adv. Neurol. Disord. 2021; 14: 1756286420985237. doi: 10.1177/1756286420985237
  16. Ivey S.L., Hanley H.R., Taylor C. et al. Early identification and treatment of women’s cardiovascular risk factors prevents cardiovascular disease, saves lives, and protects future generations: Policy recommendations and take action plan utilizing policy levers. Clin. Cardiol. 2022; 45(11): 1100–1106. doi: 10.1002/clc.23921

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. ROC curve for predicted probability of IS development in women aged 45–74 years.

Download (72KB)
3. Fig. 2. ROC curve for predicted probability of large-artery atherothrombotic IS in women aged 45 to 74 years.

Download (70KB)
4. Fig. 3. ROC curve for predicted probability of cardioembolic IS development in women aged 45–74 years.

Download (74KB)
5. Fig. 4. ROC curve for predicted probability of lacunar embolic IS development in women aged 45–74 years.

Download (69KB)

Copyright (c) 2023 Maximova M.Y., Sazonova V.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».