Locomotion supraspinal control assessment in healthy people and stroke patients with the use of passive motor fMRI paradigm


Cite item

Full Text

Abstract

Functional magnetic resonance imaging (fMRI) is widely applicable for sensorimotor cortex mapping in human. The most challenging fMRI task for researchers is the assessment of locomotion. The aim of our study was to design of a passive motor fMRI paradigm for assess supraspinal control of the skillof walking in normal subjects and in patients with motor neurologic deficit after ischemic stroke. We conducted fMRI in two groups of human subjects: first group – 19 healthy subjects (10 females and 9 males, mean age = 38 [31,5; 60] years), second group – 18 ischemic stroke patients in early recovery period (first 6 months) (6 females, 12 males, mean age = 55,5 [45,5; 64,5] years) with severe and moderate (mean Fugl- Meyer scale score = 22 [15; 28]).The protocol consisted of blocked-design paradigm: plantar stimulation by imitation of slow walking vs rest. Individual and group activation patterns were analyzed using statistical package SPM5. A significant activation (pcorrect<0.05 at cluster level) in first group was observed in the primary and secondary sensorimotor cortex, premotor and dorsolateral prefrontal cortex, in insula. Due to lesion localization second group was subdivided into corticalsubcotrical (CS) and subcortical (S) subgroups. In CS subgroup there was reduce of activation size, more prominent in the affected hemisphere, whereas in S subgroup the extension of activation regions in both hemispheres was revealed, comparing to group 1. It was demonstrated that our passive motor fMRI paradigm of walking imitation with the use of plantar load imitator Korvit can be used to localize the ensorimotor brain areas involved in locomotion in both healthy people and patients. Concerning stroke patients, such an approach can help in understanding the mechanisms of supraspinal control of the skill walking and optimal rehabilitation strategy.

 

About the authors

Elena I. Kremneva

Research Center of Neurology

Author for correspondence.
Email: moomin10j@mail.ru
ORCID iD: 0000-0001-9396-6063

Cand. Sci. (Med.), senior researcher, Radiology department

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Lyudmila A. Chernikova

Reseach Center of Neurology

Email: moomin10j@mail.ru
Russian Federation, Moscow

Rodion N. Konovalov

Research Center of Neurology

Email: moomin10j@mail.ru
ORCID iD: 0000-0001-5539-245X

Cand. Sci. (Med.), senior researcher, Neuroradiology department

Russian Federation, 125367 Moscow, Volokolamskoye shosse, 80

Marina V. Krotenkova

Research Center of Neurology

Email: moomin10j@mail.ru
ORCID iD: 0000-0003-3820-4554

D. Sci. (Med.), Head, Radiology department

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

I. V. Saenko

SSC RF Institute of blomedical problems, Russian Academy of Sciences

Email: moomin10j@mail.ru
Russian Federation, Moscow

I. B. Kozlovskaya

SSC RF Institute of blomedical problems, Russian Academy of Sciences

Email: moomin10j@mail.ru
Russian Federation, Moscow

Alexander V. Chervyakov

Research Center of Neurology

Email: moomin10j@mail.ru
Russian Federation, Moscow

References

  1. Бернштейн Н.А. О построении движений. М.: Медгиз, 1947:107–144.
  2. Физиология человека (в 3-х томах) под ред. Р. Шмидта иГ. Тевса, 3-е изд. – М.: Мир, 2005, Т1: 157.
  3. Calautti C., Baron J.-C. Functional neuroimaging studies of motorrecovery after stroke in adults. Stroke, 2003; 34: 1553–1566.
  4. Cao Y., D’Olhaberriague L., Vikingstad E.M. et al.Pilot study offunctional MRI to assess cerebral activation of motor function afterpoststroke hemiparesis. Stroke. 1998; 29: 112–122.
  5. Cramer S.C., Moore C.I., Finklestein S.P., Rosen B.R.A pilot studyof somatotopic mapping after cortical infarct. Stroke. 2000; 31:668–671.
  6. Crenna P., Frigo C.A motor programme for the initiation of for-ward-oriented movements in humans. J. Physiol., 1991; 437: 635–653.
  7. De Renzi E., Faglioni P., Sorgato P. Modality-specific andsupramodal mechanisms of apraxia. Brain, 1982; 105 (2): 301–312.
  8. Derrfuss J., Brass M., von Cramon D.Y.Cognitive control in the pos-terior frontolateral cortex: evidence from common activations in taskcoordination, interference control, and working memory. Neuroimage,2004; 23(2): 604–612.
  9. Dettmers C., Stephan K.M., Lemon R.N., Frackowiak R.S.J.Reorganization of the executive motor system after stroke. CerebrovascDis. 1997; 7: 187–200.
  10. Friston K.J., Holmes A.P., Worsley K.J. et al.Statistical parametricmaps in functional imaging: A general linear approach. Human BrainMapping, 1995, 2 (4): 189–210.
  11. Gerardin E., Sirigu A., Lehericy S. et al. Partially overlapping neuralnetworks for real and imagined hand movements. Cereb Cortex, 2002;10 (11): 1093–1104.
  12. .Golaszewski S.M., Siedentopf C.M., Baldauf E. et al. Functionalmagnetic resonance imaging of the human sensorimotor cortex using anovel vibrotactile stimulator. NeuroImage, 2002; 17: 421–430.
  13. Golaszewski S.M., Siedentopf C.M., Koppelstaetter F. et al. Humanbrain structures related to plantar vibrotactile stimulation: A functionalmagnetic resonance imaging study. NeuroImage, 2006; 29: 923–929.
  14. Heilman K.M., Rothi L.J., Valenstein E.Two forms of ideomotorapraxia. Neurology, 1982; 32 (4): 342–346.
  15. Henry J.D., Crawford J.R.A meta-analytic review of verbal fluencyperformance following focal cortical lesions. Neuropsychology, 2004;18 (2): 284–295.
  16. .Holmes G. The Croonian lectures on the clinical symptoms of cere-bellar disease and their interpretation. Lancet, 1922; 1: 1177–1237.
  17. Iseki K., Hanakawa T., Shinozaki J. et al. Neural mechanismsinvolved in mental imagery and observation of gait. NeuroImage, 2008;41: 1021–1031.
  18. Jackson P.L., Lafleur M.F., Malouin F. et al. Functional cerebralreorganization following motor sequence learning through mentalpractice with motor imagery. Neuroimage, 2003; 20 (2): 1171–1180.
  19. .Jahn K., Deutschlander A., Stephan T. et al.Brain activation patternsduring imagined stance and locomotion in functional magnetic reso-nance imaging. NeuroImage, 2004; 22: 1722–1731.
  20. .Jian Y., Winter D.A., Ishac M.G., Gilchrist L. Trajectory of the bodyCOG and COP during initiation and termination of gait. Gait Posture,1993; 1: 9–22.
  21. .Kozlovskaya I.B., Sayenko I.V., Sayenko D.G. et al. Role of supportafferentation in control of the tonic muscle activity. Acta Astronautica,2007; 60: 285–294.
  22. .Kozlovskaya I.B., Vinogradova O.V., Sayenko I.V. et al.Newapproaches to countermeasures of the negative effects of microgravityin long-term space flights. Acta Astronautica, 2006; 59: 13–19.
  23. .la Fougere C., Zwergal A., Rominger A. et al. Real versus imaginedlocomotion: A [18F]-FDG PET-fMRI comparison. NeuroImage,2010; 50: 1589–1598.
  24. Lafleur M.F., Jackson P.L., Malouin F. et al.Motor learning pro-duces parallel dynamic functional changes during the execution andimagination of sequential foot movements. Neuroimage, 2002; 16 (1):142–157.
  25. Lotze M., Montoya P., Erb M. et al. Activation of cortical and cere-bellar motor areas during executed and imagined hand movements: anfMRI study. J Cogn Neurosci, 1999; 11 (5): 491–501.
  26. .McFadyen B., Winter D.A. Anticipatory locomotor adjustments dur-ing obstructed human walking. Neurosci. Res.,1991; 9: 37–44.
  27. Mehta J.P., Verber M.D., Wieser J.A. et al. A novel technique forexamining human brain activity associated with pedaling using fMRI.Journal of Neuroscience Methods, 2009; 179: 230–239.
  28. Nair D.G., Purcott K.L., Fuchs A.Cortical and cerebellar activity ofthe human brain during imagined and executed unimanual and biman-ual action sequences: a functional MRI study. Brain Res Cogn BrainRes, 2003; 15 (3): 250–260.
  29. Penfield W., Boldrey E. Somatic motor and sensory representationin the cerebral cortex of man as studied by electrical stimulation. Brain1937; 60: 389–443.
  30. Righini A., de Diviitis O., Prinster A. et al.Functional MRI: Primarymotor cortex localization in patients with brain tumors. J. Comp. Assist.Tomogr., 1996; 20 (5): 702–706.
  31. Sacco K., Cauda F., Cerliani L. et al.Motor imagery of walking fol-lowing training in locomotor attention. The effect of 'the tango lesson'.NeuroImage, 2006; 32 (3): 1441–9.
  32. Seitz R.J., Hoflich P., Binkofski F. et al. Role of the premotor cortexin recovery from middle cerebral artery infarction. Arch Neurol. 1998;55: 1081–1088

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Kremneva E.I., Chernikova L.A., Konovalov R.N., Krotenkova M.V., Saenko I.V., Kozlovskaya I.B., Chervyakov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».