Plastic reorganization of hippocampal synapses resulted from pharmacological blockade of type 1 cannabinoid receptors

Cover Page

Cite item

Full Text

Abstract

Endogenous cannabinoid system plays an important physiological role in brain functioning, being related to regulation of neuromediator processes and mechanisms of neuroplasticity. Cannabinoid receptors of type 1 (CB1) represent one of the key elements of this system and convenient object for various experimental effects. We showed plastic reorganization of synapses in hippocampal CA1 stratum radiatum in vitro resulted from pharmacological blockade of CB1. The ultrastructural features of this reorganization are the formation of numerous perforated contacts with elongated synaptic membranes of modified configuration, spatial synaptic rearrangement, and the appearance of atypical synaptic connections. The obtained results suggest that involvement of CB1 in modulation of synaptic transmission is one of the mechanisms which ensure the stable morphofunctional state of synapse and promote its integrity in disturbances of neurotransmission regulation.

About the authors

L. E. Frumkina

Research Center of Neurology

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

M. Yu. Bobrov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Medical Sciences, Moscow

Email: platonova@neurology.ru
Russian Federation

A. A. Lyzhin

Research Center of Neurology

Email: platonova@neurology.ru
Russian Federation

E. L. Andrianova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Medical Sciences, Moscow

Email: platonova@neurology.ru
Russian Federation

S. K. Koroleva

Research Center of Neurology

Email: platonova@neurology.ru
Russian Federation

N. A. Bobrova

Russian State Medical University, Moscow

Email: platonova@neurology.ru
Russian Federation

L. G. Khaspekov

Research Center of Neurology

Email: platonova@neurology.ru
Russian Federation

References

  1. Хаспеков Л.Г., Бобров М.Ю. Эндогенная каннабиноидная система и ее защитная роль при ишемическом и цитотоксическом повреждении нейронов головного мозга. Нейрохимия 2006; 23: 85–105.
  2. Brenz Verca M., Khaspekov L., Monory K. et al. Involvement of endogenous cannabinoid system in regulation of hippocampal synaptic pla- sticity. In: International Symposium “Hippocampus and Memory” (Abstracts). Puschino, 2006: 52.
  3. Calverley R.K.S., Jones D.G. Contributions of dendrite spines and perforated synapses to synaptic plasticity. Brain Res. Rev. 1990; 15: 215–249.
  4. Devane W.A., Dysarz F.A., Johnson M.R. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 1988; 34: 605–613.
  5. Di Marzo V., Bifulco M., De Petrocellis L. The endocannabinoids system and its therapeutic exploitation. Nat. Rev. Drug Discov. 2004; 3: 771–784.
  6. Dyson S.E., Jones D.G. Synaptic remodelling during development and maturation: junction differentiation and spliting as a mechanism for modifying connectivity. Brain Res. 1984; 315: 125–137.
  7. Edvards F.A. Anatomy and electrophysiology of fast central synapses lead to a structural model for long term potentiation. Physiol. Rev. 1995; 75: 759–787.
  8. Freund T.F., Katona I., Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 2003; 83: 1017–1066.
  9. Ganeshina O., Berry R.W., Petralia R.S. et al. Synapses with segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junction. Neuroscience 2004; 125: 615–623.
  10. Geinisman Y. Perforated axospinous synapses with multiple, completely partitioned transmission zones: probable structural intermediates in synaptic plastisity. Hippocampus 1993; 3: 417–434.
  11. Harris K.M., Fiala J.C., Ostroff L. Structural changes at dendritic spine synapses during long term potentiation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2003; 358: 745–748.
  12. Khaspekov L.G., Brenz Verca M.S., Frumkina L.E. et al. Involvement of brain derived neurotrophic factor in cannabinoid receptor dependent protection against excitotoxicity. Eur. J. Neurosci. 2004; 19: 1691–1698.
  13. Khaspekov L., Brenz Verca M., Frumkina L. et al. CB1 cannabinoid receptor mediated protection against excitotoxic damage of hippocampal neurons in vitro: histological and ultrastructural analysis. Eur. Neuropsychopharmacol. 2005; 15 (Suppl. 2): 216.
  14. Marrone D.F., Petit T.L. The role of synaptic morphology in neural plastisity: structural interactions underlying synaptic power. Brain Res. Rev. 2002; 38: 291–308.
  15. Matsuda L.A., Lolait S.J., Brownstein M.J. et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346: 561–564.
  16. Matsuzaki M., Honkura N., Ellis Davies G.C.R., Kasai H. Structural basis of long term potentiation in single dendrite spines. Nature 2004; 429: 761–776.
  17. Neuhoff H., Roeper J., Schweizer M. Activity dependent formation of perforated synapses in cultured hippocampal neurons. Eur. J. Neurosci. 1999; 11: 4241–4250.
  18. Piomelli D. The molecular logic of endocannabinoid signaling. Nat. Rev. Neurosci. 2003; 4: 873–884.
  19. Spacek J., Harris K.M. Trans endocytosis via spinules in adult rat hippocampus. J. Neurosci. 2004; 24: 4233–4241.
  20. Stewart M.G., Medvedev N.I., Popov V.I. et al. Chemically induced long term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. Eur. J. Neurosci. 2005; 21: 3368–3378.
  21. Stoppini L., Buchs P.тA., Muller D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Meth. 1991; 37: 173–182.
  22. Toni N., Buchs P.тA., Nikonenko I. et al. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 1999; 402: 421–425.
  23. Toni N., Buchs P.тA., Nikonenko I. et al. Remodeling of synaptic membranes after induction of long term potentiation. J. Neurosci. 2001; 21: 6245–6251.
  24. White B.C., Sullivan J.M., DeGracia D.J. et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J. Neurol. Sci. 2000; 179: 1–33.
  25. Yuste R., Bonhoeffer T. Morphological changes in dendritic spines associated with long term plasticity. Ann. Rev. Neurosci. 2001; 24: 1071–1089.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2007 Frumkina L.E., Bobrov M.Y., Lyzhin A.A., Andrianova E.L., Koroleva S.K., Bobrova N.A., Khaspekov L.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».